Suppr超能文献

使用高斯聚焦超声进行横向声捕获。

Transverse acoustic trapping using a gaussian focused ultrasound.

机构信息

Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Ultrasound Med Biol. 2010 Feb;36(2):350-5. doi: 10.1016/j.ultrasmedbio.2009.10.005. Epub 2010 Jan 4.

Abstract

The optical tweezer has become a popular device to manipulate particles in nanometer scales and to study the underlying principles of many cellular or molecular interactions. Theoretical analysis was previously carried out at the authors' laboratory, to show that similar acoustic trapping of microparticles may be possible with a single beam ultrasound. This article experimentally presents the transverse trapping of 125 microm lipid droplets under an acoustically transparent mylar film, which is an intermediate step toward achieving acoustic tweezers in three-dimension. Despite the lack of axial trapping capability in the current experimental arrangement, it was found that a 30 MHz focused beam could be used to laterally direct the droplets toward the focus. The spatial range within which acoustic traps may guide droplet motion was in the range of hundreds of micrometers, much greater than that of optical traps. This suggests that this acoustic device may offer an alternative for manipulating microparticles in a wider spatial range.

摘要

光镊已成为一种流行的工具,用于在纳米尺度上操纵粒子,并研究许多细胞或分子相互作用的基本原理。之前,作者实验室进行了理论分析,表明单个光束超声也可能实现类似的微粒子声捕获。本文实验展示了在声学透明聚酯薄膜下对 125 微米脂质液滴的横向捕获,这是实现三维声镊的中间步骤。尽管当前实验装置缺乏轴向捕获能力,但发现 30MHz 聚焦光束可用于将液滴横向引导至焦点。在声学陷阱可能引导液滴运动的空间范围内,范围在数百微米内,远大于光阱的范围。这表明,这种声学设备可能为在更宽的空间范围内操纵微粒子提供了一种替代方法。

相似文献

1
Transverse acoustic trapping using a gaussian focused ultrasound.
Ultrasound Med Biol. 2010 Feb;36(2):350-5. doi: 10.1016/j.ultrasmedbio.2009.10.005. Epub 2010 Jan 4.
2
Calibration of sound forces in acoustic traps.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Oct;57(10):2305-10. doi: 10.1109/TUFFC.2010.1691.
3
Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
Ultrasonics. 2014 Jan;54(1):11-9. doi: 10.1016/j.ultras.2013.06.002. Epub 2013 Jun 17.
4
A theoretical study of the feasibility of acoustical tweezers: ray acoustics approach.
J Acoust Soc Am. 2005 May;117(5):3273-80. doi: 10.1121/1.1886387.
5
Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect.
Ultrasonics. 2013 Jan;53(1):249-54. doi: 10.1016/j.ultras.2012.06.008. Epub 2012 Jul 6.
6
A One-Sided Acoustic Trap for Cell Immobilization Using 30-MHz Array Transducer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jan;67(1):167-172. doi: 10.1109/TUFFC.2019.2940239. Epub 2019 Sep 10.
7
Potential-well model in acoustic tweezers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1451-9. doi: 10.1109/TUFFC.2010.1564.
8
Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application.
Biotechnol Bioeng. 2013 Mar;110(3):881-6. doi: 10.1002/bit.24735. Epub 2012 Oct 16.
9
On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11105-9. doi: 10.1073/pnas.1209288109. Epub 2012 Jun 25.
10
An adjustable multi-scale single beam acoustic tweezers based on ultrahigh frequency ultrasonic transducer.
Biotechnol Bioeng. 2017 Nov;114(11):2637-2647. doi: 10.1002/bit.26365. Epub 2017 Jul 18.

引用本文的文献

1
Droplet acoustofluidics: Recent progress and challenges.
Biomicrofluidics. 2025 Jun 4;19(3):031502. doi: 10.1063/5.0261531. eCollection 2025 May.
2
Contactless Single Cell Extraction From Monolayer Cell Culture Using a MEMS Acoustic Droplet Ejector.
IEEE Trans Biomed Eng. 2025 Jan;72(1):249-255. doi: 10.1109/TBME.2024.3447715. Epub 2025 Jan 15.
3
Modification of microstructure on PZT films for ultrahigh frequency transducer.
Ceram Int. 2015 Jul;41(Suppl 1):S650-S655. doi: 10.1016/j.ceramint.2015.03.202. Epub 2015 Mar 31.
6
Four-dimensional (4D) phase velocity optical coherence elastography in heterogeneous materials and biological tissue.
Biomed Opt Express. 2020 Jun 18;11(7):3795-3817. doi: 10.1364/BOE.394835. eCollection 2020 Jul 1.
7
Acoustofluidic Holography for Micro- to Nanoscale Particle Manipulation.
ACS Nano. 2020 Nov 24;14(11):14635-14645. doi: 10.1021/acsnano.0c03754. Epub 2020 Jun 23.
8
Fluid surface tension evaluation using capillary wave measurement with optical coherence tomography.
AIP Adv. 2020 May 19;10(5):055121. doi: 10.1063/1.5143935. eCollection 2020 May.
9
Label-free analysis of the characteristics of a single cell trapped by acoustic tweezers.
Sci Rep. 2017 Oct 26;7(1):14092. doi: 10.1038/s41598-017-14572-w.
10
Contactless microparticle control via ultrahigh frequency needle type single beam acoustic tweezers.
Appl Phys Lett. 2016 Oct 24;109(17):173509. doi: 10.1063/1.4966285. Epub 2016 Oct 27.

本文引用的文献

1
Observation of a single-beam gradient force optical trap for dielectric particles.
Opt Lett. 1986 May 1;11(5):288. doi: 10.1364/ol.11.000288.
2
Radiation force of a helicoidal Bessel beam on a sphere.
J Acoust Soc Am. 2009 Jun;125(6):3539-47. doi: 10.1121/1.3119625.
3
Ultrasonic trapping of small particles by a vibrating rod.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Apr;56(4):798-805. doi: 10.1109/TUFFC.2009.1102.
6
Negative axial radiation forces on solid spheres and shells in a Bessel beam.
J Acoust Soc Am. 2007 Dec;122(6):3162-5. doi: 10.1121/1.2799501.
7
Droplet microfluidics.
Lab Chip. 2008 Feb;8(2):198-220. doi: 10.1039/b715524g. Epub 2008 Jan 11.
8
Axial radiation force of a bessel beam on a sphere and direction reversal of the force.
J Acoust Soc Am. 2006 Dec;120(6):3518-24. doi: 10.1121/1.2361185.
9
Effect of ultrasonic attenuation on the feasibility of acoustic tweezers.
Ultrasound Med Biol. 2006 Oct;32(10):1575-83. doi: 10.1016/j.ultrasmedbio.2006.05.021.
10
Radiation forces exerted on arbitrarily located sphere by acoustic tweezer.
J Acoust Soc Am. 2006 Aug;120(2):1084-94. doi: 10.1121/1.2216899.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验