Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea.
Ultrasonics. 2013 Jan;53(1):249-54. doi: 10.1016/j.ultras.2012.06.008. Epub 2012 Jul 6.
It has recently been demonstrated that it was possible to individually trap 70μm droplets flowing within a 500μm wide microfluidic channel by a 24MHz single element piezo-composite focused transducer. In order to further develop this non-invasive approach as a microfluidic particle manipulation tool of high precision, the trapping force needs to be calibrated to a known force, i.e., viscous drag force arising from the fluid flow in the channel. However, few calibration studies based on fluid viscosity have been carried out with focused acoustic beams for moving objects in microfluidic environments. In this paper, the acoustic trapping force (F(trapping)) and the trap stiffness (or compliance k) are experimentally determined for a streaming droplet in a microfluidic channel. F(trapping) is calibrated to viscous drag force produced from syringe pumps. Chebyshev-windowed chirp coded excitation sequences sweeping the frequency range from 18MHz to 30MHz is utilized to drive the transducer, enabling the beam transmission through the channel/fluid interface for interrogating the droplets inside the channel. The minimum force (F(min,trapping)) required for initially immobilizing drifting droplets is determined as a function of pulse repetition frequency (PRF), duty factor (DTF), and input voltage amplitude (V(in)) to the transducer. At PRF=0.1kHz and DTF=30%, F(min,trapping) is increased from 2.2nN for V(in)=22V(pp) to 3.8nN for V(in)=54V(pp). With a fixed V(in)=54V(pp) and DTF=30%, F(min,trapping) can be varied from 3.8nN at PRF=0.1kHz to 6.7nN at PRF=0.5kHz. These findings indicate that both higher driving voltage and more frequent beam transmission yield stronger traps for holding droplets in motion. The stiffness k can be estimated through linear regression by measuring the trapping force (F(trapping)) corresponding to the displacement (x) of a droplet from the trap center. By plotting F(trapping) - x curves for certain values of V(in) (22/38/54V(pp)) at DTF=10% and PRF=0.1kHz, k is measured to be 0.09, 0.14, and 0.20nN/μm, respectively. With variable PRF from 0.1 to 0.5kHz at V(in)=54 V(pp), k is increased from 0.20 to 0.42nN/μm. It is shown that a higher PRF leads to a more compliant trap formation (or a stronger F(trapping)) for a given displacement x. Hence the results suggest that this acoustic trapping method has the potential as a noninvasive manipulation tool for individual moving targets in microfluidics by adjusting the transducer's excitation parameters.
最近已经证明,通过 24MHz 单元素压电复合材料聚焦换能器,可以单独捕获在 500μm 宽微流道内流动的 70μm 液滴。为了进一步将这种非侵入式方法发展成为高精度的微流控粒子操纵工具,需要将捕获力校准到已知力,即通道内流体流动产生的粘性阻力。然而,在微流控环境中,基于流体粘度的聚焦声束对移动物体的校准研究很少。在本文中,通过微流道中的流动液滴实验确定了声捕获力(F(trapping))和捕获刚度(或顺应性 k)。F(trapping)通过注射器泵产生的粘性阻力进行校准。利用 Chebyshev 窗啁啾编码激励序列,频率范围从 18MHz 扫到 30MHz,用于驱动换能器,使光束通过通道/流体界面传输,以检测通道内的液滴。作为脉冲重复频率(PRF)、占空比(DTF)和换能器输入电压幅度(V(in))的函数,确定了初始固定漂移液滴所需的最小力(F(min,trapping))。当 PRF=0.1kHz 且 DTF=30%时,F(min,trapping)从 V(in)=22V(pp)时的 2.2nN 增加到 V(in)=54V(pp)时的 3.8nN。当固定 V(in)=54V(pp)且 DTF=30%时,F(min,trapping)可以从 PRF=0.1kHz 时的 3.8nN 变化到 PRF=0.5kHz 时的 6.7nN。这些发现表明,更高的驱动电压和更频繁的光束传输都可以产生更强的力来保持运动中的液滴。通过测量液滴从捕获中心的位移(x)对应的捕获力(F(trapping)),可以通过线性回归估计刚度 k。通过在 DTF=10%且 PRF=0.1kHz 时对某些 V(in)值(22/38/54V(pp))绘制 F(trapping) - x 曲线,测量得到 k 分别为 0.09、0.14 和 0.20nN/μm。当 V(in)=54V(pp)且 PRF 在 0.1 到 0.5kHz 之间变化时,k 从 0.20 增加到 0.42nN/μm。结果表明,对于给定的位移 x,较高的 PRF 会导致更柔顺的捕获力形成(或更强的 F(trapping))。因此,这些结果表明,通过调整换能器的激励参数,这种声捕获方法有可能成为微流控中单个移动目标的非侵入式操纵工具。