Suppr超能文献

使用粘性阻力效应的微流控声捕获力和刚度测量。

Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect.

机构信息

Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea.

出版信息

Ultrasonics. 2013 Jan;53(1):249-54. doi: 10.1016/j.ultras.2012.06.008. Epub 2012 Jul 6.

Abstract

It has recently been demonstrated that it was possible to individually trap 70μm droplets flowing within a 500μm wide microfluidic channel by a 24MHz single element piezo-composite focused transducer. In order to further develop this non-invasive approach as a microfluidic particle manipulation tool of high precision, the trapping force needs to be calibrated to a known force, i.e., viscous drag force arising from the fluid flow in the channel. However, few calibration studies based on fluid viscosity have been carried out with focused acoustic beams for moving objects in microfluidic environments. In this paper, the acoustic trapping force (F(trapping)) and the trap stiffness (or compliance k) are experimentally determined for a streaming droplet in a microfluidic channel. F(trapping) is calibrated to viscous drag force produced from syringe pumps. Chebyshev-windowed chirp coded excitation sequences sweeping the frequency range from 18MHz to 30MHz is utilized to drive the transducer, enabling the beam transmission through the channel/fluid interface for interrogating the droplets inside the channel. The minimum force (F(min,trapping)) required for initially immobilizing drifting droplets is determined as a function of pulse repetition frequency (PRF), duty factor (DTF), and input voltage amplitude (V(in)) to the transducer. At PRF=0.1kHz and DTF=30%, F(min,trapping) is increased from 2.2nN for V(in)=22V(pp) to 3.8nN for V(in)=54V(pp). With a fixed V(in)=54V(pp) and DTF=30%, F(min,trapping) can be varied from 3.8nN at PRF=0.1kHz to 6.7nN at PRF=0.5kHz. These findings indicate that both higher driving voltage and more frequent beam transmission yield stronger traps for holding droplets in motion. The stiffness k can be estimated through linear regression by measuring the trapping force (F(trapping)) corresponding to the displacement (x) of a droplet from the trap center. By plotting F(trapping) - x curves for certain values of V(in) (22/38/54V(pp)) at DTF=10% and PRF=0.1kHz, k is measured to be 0.09, 0.14, and 0.20nN/μm, respectively. With variable PRF from 0.1 to 0.5kHz at V(in)=54 V(pp), k is increased from 0.20 to 0.42nN/μm. It is shown that a higher PRF leads to a more compliant trap formation (or a stronger F(trapping)) for a given displacement x. Hence the results suggest that this acoustic trapping method has the potential as a noninvasive manipulation tool for individual moving targets in microfluidics by adjusting the transducer's excitation parameters.

摘要

最近已经证明,通过 24MHz 单元素压电复合材料聚焦换能器,可以单独捕获在 500μm 宽微流道内流动的 70μm 液滴。为了进一步将这种非侵入式方法发展成为高精度的微流控粒子操纵工具,需要将捕获力校准到已知力,即通道内流体流动产生的粘性阻力。然而,在微流控环境中,基于流体粘度的聚焦声束对移动物体的校准研究很少。在本文中,通过微流道中的流动液滴实验确定了声捕获力(F(trapping))和捕获刚度(或顺应性 k)。F(trapping)通过注射器泵产生的粘性阻力进行校准。利用 Chebyshev 窗啁啾编码激励序列,频率范围从 18MHz 扫到 30MHz,用于驱动换能器,使光束通过通道/流体界面传输,以检测通道内的液滴。作为脉冲重复频率(PRF)、占空比(DTF)和换能器输入电压幅度(V(in))的函数,确定了初始固定漂移液滴所需的最小力(F(min,trapping))。当 PRF=0.1kHz 且 DTF=30%时,F(min,trapping)从 V(in)=22V(pp)时的 2.2nN 增加到 V(in)=54V(pp)时的 3.8nN。当固定 V(in)=54V(pp)且 DTF=30%时,F(min,trapping)可以从 PRF=0.1kHz 时的 3.8nN 变化到 PRF=0.5kHz 时的 6.7nN。这些发现表明,更高的驱动电压和更频繁的光束传输都可以产生更强的力来保持运动中的液滴。通过测量液滴从捕获中心的位移(x)对应的捕获力(F(trapping)),可以通过线性回归估计刚度 k。通过在 DTF=10%且 PRF=0.1kHz 时对某些 V(in)值(22/38/54V(pp))绘制 F(trapping) - x 曲线,测量得到 k 分别为 0.09、0.14 和 0.20nN/μm。当 V(in)=54V(pp)且 PRF 在 0.1 到 0.5kHz 之间变化时,k 从 0.20 增加到 0.42nN/μm。结果表明,对于给定的位移 x,较高的 PRF 会导致更柔顺的捕获力形成(或更强的 F(trapping))。因此,这些结果表明,通过调整换能器的激励参数,这种声捕获方法有可能成为微流控中单个移动目标的非侵入式操纵工具。

相似文献

1
Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect.
Ultrasonics. 2013 Jan;53(1):249-54. doi: 10.1016/j.ultras.2012.06.008. Epub 2012 Jul 6.
2
Particle manipulation in a microfluidic channel using acoustic trap.
Biomed Microdevices. 2011 Aug;13(4):779-88. doi: 10.1007/s10544-011-9548-0.
4
Calibration of Trapping Force on Cell-Size Objects From Ultrahigh-Frequency Single-Beam Acoustic Tweezer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Nov;63(11):1988-1995. doi: 10.1109/TUFFC.2016.2600748.
5
Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
Ultrasonics. 2014 Jan;54(1):11-9. doi: 10.1016/j.ultras.2013.06.002. Epub 2013 Jun 17.
6
Calibration of sound forces in acoustic traps.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Oct;57(10):2305-10. doi: 10.1109/TUFFC.2010.1691.
7
Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays.
Anal Chem. 2007 Apr 1;79(7):2984-91. doi: 10.1021/ac061576v. Epub 2007 Feb 22.
9
Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
Ultrasonics. 2008 Nov;48(6-7):529-36. doi: 10.1016/j.ultras.2008.06.004. Epub 2008 Jun 13.
10
Transverse acoustic trapping using a gaussian focused ultrasound.
Ultrasound Med Biol. 2010 Feb;36(2):350-5. doi: 10.1016/j.ultrasmedbio.2009.10.005. Epub 2010 Jan 4.

引用本文的文献

本文引用的文献

1
Particle manipulation in a microfluidic channel using acoustic trap.
Biomed Microdevices. 2011 Aug;13(4):779-88. doi: 10.1007/s10544-011-9548-0.
2
Potential-well model in acoustic tweezers--comment.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Mar;58(3):662-5. doi: 10.1109/TUFFC.2011.1850.
3
Calibration of sound forces in acoustic traps.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Oct;57(10):2305-10. doi: 10.1109/TUFFC.2010.1691.
4
Potential-well model in acoustic tweezers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1451-9. doi: 10.1109/TUFFC.2010.1564.
5
Single beam acoustic trapping.
Appl Phys Lett. 2009 Aug 17;95(7):73701. doi: 10.1063/1.3206910.
6
Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices.
Lab Chip. 2009 Sep 21;9(18):2625-7. doi: 10.1039/b906819h. Epub 2009 Jun 26.
7
Interfacial jetting phenomena induced by focused surface vibrations.
Phys Rev Lett. 2009 Jul 10;103(2):024501. doi: 10.1103/PhysRevLett.103.024501. Epub 2009 Jul 7.
8
Negative axial radiation forces on solid spheres and shells in a Bessel beam.
J Acoust Soc Am. 2007 Dec;122(6):3162-5. doi: 10.1121/1.2799501.
9
Droplet microfluidics.
Lab Chip. 2008 Feb;8(2):198-220. doi: 10.1039/b715524g. Epub 2008 Jan 11.
10
Bandwidth and resolution enhancement through pulse compression.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Apr;54(4):768-81. doi: 10.1109/tuffc.2007.310.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验