Suppr超能文献

磷酸化 H2AX 焦点形成和 DNA 双链断裂处 DNA 修复组装的复杂性。

The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks.

机构信息

Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

Cell Cycle. 2010 Jan 15;9(2):389-97. doi: 10.4161/cc.9.2.10475. Epub 2010 Jan 29.

Abstract

The maintenance of genome stability requires efficient DNA double-stranded break (DSB) repair mediated by the phosphorylation of multiple histone H2AX molecules near the break sites. The phosphorylated H2AX (gammaH2AX) molecules form foci covering many megabases of chromatin. The formation of gamma-H2AX foci is critical for efficient DNA damage response (DDR) and for the maintenance of genome stability, however, the mechanisms of protein organization in foci is largely unknown. To investigate the nature of gammaH2AX foci formation, we analyzed the distribution of gammaH2AX and other DDR proteins at DSB sites using a variety of techniques to visualize, expand and partially disrupt chromatin. We report here that gammaH2AX foci change composition during the cell cycle, with proteins 53BP1, NBS1 and MRE11 dissociating from foci in G(2) and mitosis to return at the beginning of the following G(1). In contrast, MDC1 remained colocalized with gamma-H2AX during mitosis. In addition, while gammaH2AX was found to span large domains flanking DSB sites, 53BP1 and NBS1 were more localized and MDC1 colocalized in doublets in foci. H2AX and MDC1 were found to be involved in chromatin relaxation after DSB formation. Our data demonstrates that the DSB repair focus is a heterogeneous and dynamic structure containing internal complexity.

摘要

基因组稳定性的维持需要通过多个组蛋白 H2AX 分子在断裂部位附近的磷酸化来介导有效的 DNA 双链断裂 (DSB) 修复。磷酸化的 H2AX (γH2AX) 分子形成覆盖许多兆碱基染色质的焦点。γ-H2AX 焦点的形成对于有效的 DNA 损伤反应 (DDR) 和基因组稳定性的维持至关重要,然而,焦点中蛋白质的组织机制在很大程度上是未知的。为了研究 γH2AX 焦点形成的性质,我们使用各种技术分析了 DSB 位点处 γH2AX 和其他 DDR 蛋白的分布,以可视化、扩展和部分破坏染色质。我们在这里报告说,γH2AX 焦点在细胞周期中改变组成,53BP1、NBS1 和 MRE11 蛋白在 G2 和有丝分裂中从焦点解离,在下一个 G1 开始时返回。相比之下,MDC1 在有丝分裂期间仍然与 γ-H2AX 共定位。此外,虽然 γH2AX 被发现跨越 DSB 位点侧翼的大区域,但 53BP1 和 NBS1 更本地化,并且 MDC1 在焦点中呈双联体共定位。H2AX 和 MDC1 被发现参与 DSB 形成后的染色质松弛。我们的数据表明,DSB 修复焦点是一种异质且动态的结构,包含内部复杂性。

相似文献

1
The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks.
Cell Cycle. 2010 Jan 15;9(2):389-97. doi: 10.4161/cc.9.2.10475. Epub 2010 Jan 29.
2
Clustered DNA damage induces pan-nuclear H2AX phosphorylation mediated by ATM and DNA-PK.
Nucleic Acids Res. 2013 Jul;41(12):6109-18. doi: 10.1093/nar/gkt304. Epub 2013 Apr 24.
3
Wild-type p53-induced phosphatase 1 dephosphorylates histone variant gamma-H2AX and suppresses DNA double strand break repair.
J Biol Chem. 2010 Apr 23;285(17):12935-47. doi: 10.1074/jbc.M109.071696. Epub 2010 Jan 29.
7
DNA damage signaling in response to double-strand breaks during mitosis.
J Cell Biol. 2010 Jul 26;190(2):197-207. doi: 10.1083/jcb.200911156.
8
NFBD1, like 53BP1, is an early and redundant transducer mediating Chk2 phosphorylation in response to DNA damage.
J Biol Chem. 2003 Mar 14;278(11):8873-6. doi: 10.1074/jbc.C300001200. Epub 2003 Jan 24.
9
Nucleolin participates in DNA double-strand break-induced damage response through MDC1-dependent pathway.
PLoS One. 2012;7(11):e49245. doi: 10.1371/journal.pone.0049245. Epub 2012 Nov 7.
10
Chemical proteomics reveals a γH2AX-53BP1 interaction in the DNA damage response.
Nat Chem Biol. 2015 Oct;11(10):807-14. doi: 10.1038/nchembio.1908. Epub 2015 Sep 7.

引用本文的文献

2
Conservation of dark CPD photolyase function in blind cavefish.
Nat Commun. 2025 Aug 11;16(1):7377. doi: 10.1038/s41467-025-62795-7.
3
Nuclear VPS35 attenuates NHEJ repair by sequestering Ku protein.
Mol Med. 2025 Jun 9;31(1):222. doi: 10.1186/s10020-025-01288-1.
5
Werner helicase interacting protein 1 contributes to G-quadruplex processing in human cells.
Sci Rep. 2024 Jul 8;14(1):15740. doi: 10.1038/s41598-024-66425-y.
6
BUB1 regulates non-homologous end joining pathway to mediate radioresistance in triple-negative breast cancer.
J Exp Clin Cancer Res. 2024 Jun 11;43(1):163. doi: 10.1186/s13046-024-03086-9.
8
Current Strategies for Increasing Knock-In Efficiency in CRISPR/Cas9-Based Approaches.
Int J Mol Sci. 2024 Feb 20;25(5):2456. doi: 10.3390/ijms25052456.
9
Tumor targeted alpha particle therapy with an actinium-225 labelled antibody for carbonic anhydrase IX.
Chem Sci. 2024 Jan 26;15(9):3372-3381. doi: 10.1039/d3sc06365h. eCollection 2024 Feb 28.

本文引用的文献

2
DNA damage foci in mitosis are devoid of 53BP1.
Cell Cycle. 2009 Oct 15;8(20):3379-83. doi: 10.4161/cc.8.20.9857. Epub 2009 Oct 19.
3
H2AX: functional roles and potential applications.
Chromosoma. 2009 Dec;118(6):683-92. doi: 10.1007/s00412-009-0234-4. Epub 2009 Aug 26.
4
Mre11: roles in DNA repair beyond homologous recombination.
Nat Struct Mol Biol. 2009 Aug;16(8):798-800. doi: 10.1038/nsmb0809-798.
5
GammaH2AX and cancer.
Nat Rev Cancer. 2008 Dec;8(12):957-67. doi: 10.1038/nrc2523. Epub 2008 Nov 13.
6
The direct interaction between 53BP1 and MDC1 is required for the recruitment of 53BP1 to sites of damage.
J Biol Chem. 2009 Jan 2;284(1):426-435. doi: 10.1074/jbc.M807375200. Epub 2008 Nov 5.
7
ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin.
Mol Cell. 2008 Jul 25;31(2):167-77. doi: 10.1016/j.molcel.2008.05.017.
8
Distinct versus overlapping functions of MDC1 and 53BP1 in DNA damage response and tumorigenesis.
J Cell Biol. 2008 Jun 2;181(5):727-35. doi: 10.1083/jcb.200801083. Epub 2008 May 26.
10
Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair.
Mol Cell. 2007 Dec 28;28(6):1045-57. doi: 10.1016/j.molcel.2007.12.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验