Li Yi, Tang Haicheng, Lin Xihong
Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, 44 Binney St, Boston, MA 02115.
Stat Sin. 2009;19(3):1077-1093.
Spatial data with covariate measurement errors have been commonly observed in public health studies. Existing work mainly concentrates on parameter estimation using Gibbs sampling, and no work has been conducted to understand and quantify the theoretical impact of ignoring measurement error on spatial data analysis in the form of the asymptotic biases in regression coefficients and variance components when measurement error is ignored. Plausible implementations, from frequentist perspectives, of maximum likelihood estimation in spatial covariate measurement error models are also elusive. In this paper, we propose a new class of linear mixed models for spatial data in the presence of covariate measurement errors. We show that the naive estimators of the regression coefficients are attenuated while the naive estimators of the variance components are inflated, if measurement error is ignored. We further develop a structural modeling approach to obtaining the maximum likelihood estimator by accounting for the measurement error. We study the large sample properties of the proposed maximum likelihood estimator, and propose an EM algorithm to draw inference. All the asymptotic properties are shown under the increasing-domain asymptotic framework. We illustrate the method by analyzing the Scottish lip cancer data, and evaluate its performance through a simulation study, all of which elucidate the importance of adjusting for covariate measurement errors.
在公共卫生研究中,常可观察到带有协变量测量误差的空间数据。现有工作主要集中于使用吉布斯抽样进行参数估计,尚未有研究以忽略测量误差时回归系数和方差分量的渐近偏差形式,去理解和量化忽略测量误差对空间数据分析的理论影响。从频率学派角度来看,空间协变量测量误差模型中最大似然估计的合理实现方式也难以捉摸。在本文中,我们针对存在协变量测量误差的空间数据提出了一类新的线性混合模型。我们表明,如果忽略测量误差,回归系数的朴素估计量会被削弱,而方差分量的朴素估计量会被夸大。我们进一步开发了一种结构建模方法,通过考虑测量误差来获得最大似然估计量。我们研究了所提出的最大似然估计量的大样本性质,并提出了一种期望最大化(EM)算法进行推断。所有渐近性质均在增域渐近框架下给出。我们通过分析苏格兰唇癌数据来说明该方法,并通过模拟研究评估其性能,所有这些都阐明了调整协变量测量误差的重要性。