Suppr超能文献

带有协变量测量误差的空间回归:一种半参数方法。

Spatial regression with covariate measurement error: A semiparametric approach.

作者信息

Huque Md Hamidul, Bondell Howard D, Carroll Raymond J, Ryan Louise M

机构信息

School of Mathematical and Physical Sciences, University of Technology Sydney, Australia, 15 Broadway, Ultimo, NSW, 2007, Australia.

Department of Statistics, North Carolina State University, 2311 Stinson Drive, Campus Box 8203, Raleigh, NC 27695-8203, USA.

出版信息

Biometrics. 2016 Sep;72(3):678-86. doi: 10.1111/biom.12474. Epub 2016 Jan 20.

Abstract

Spatial data have become increasingly common in epidemiology and public health research thanks to advances in GIS (Geographic Information Systems) technology. In health research, for example, it is common for epidemiologists to incorporate geographically indexed data into their studies. In practice, however, the spatially defined covariates are often measured with error. Naive estimators of regression coefficients are attenuated if measurement error is ignored. Moreover, the classical measurement error theory is inapplicable in the context of spatial modeling because of the presence of spatial correlation among the observations. We propose a semiparametric regression approach to obtain bias-corrected estimates of regression parameters and derive their large sample properties. We evaluate the performance of the proposed method through simulation studies and illustrate using data on Ischemic Heart Disease (IHD). Both simulation and practical application demonstrate that the proposed method can be effective in practice.

摘要

由于地理信息系统(GIS)技术的进步,空间数据在流行病学和公共卫生研究中越来越普遍。例如,在健康研究中,流行病学家将地理索引数据纳入其研究是很常见的。然而,在实际应用中,空间定义的协变量往往存在测量误差。如果忽略测量误差,回归系数的朴素估计量会被削弱。此外,由于观测值之间存在空间相关性,经典测量误差理论在空间建模的背景下并不适用。我们提出一种半参数回归方法来获得回归参数的偏差校正估计,并推导其大样本性质。我们通过模拟研究评估所提出方法的性能,并使用缺血性心脏病(IHD)数据进行说明。模拟和实际应用均表明,所提出的方法在实践中可能是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38b0/4956600/e9d3bb1f893d/nihms746453f1.jpg

相似文献

4
Spatial+: A novel approach to spatial confounding.空间+:一种解决空间混杂问题的新方法。
Biometrics. 2022 Dec;78(4):1279-1290. doi: 10.1111/biom.13656. Epub 2022 Mar 30.

本文引用的文献

2
Parameter Estimation of Partial Differential Equation Models.偏微分方程模型的参数估计
J Am Stat Assoc. 2013;108(503). doi: 10.1080/01621459.2013.794730.
3
Confounding and exposure measurement error in air pollution epidemiology.空气污染流行病学中的混杂因素与暴露测量误差。
Air Qual Atmos Health. 2012 Jun;5(2):203-216. doi: 10.1007/s11869-011-0140-9. Epub 2011 Mar 23.
5
Semiparametric regression during 2003-2007.2003年至2007年期间的半参数回归
Electron J Stat. 2009 Jan 1;3:1193-1256. doi: 10.1214/09-EJS525.
8
Insights on bias and information in group-level studies.群体层面研究中的偏差与信息洞察
Biostatistics. 2003 Apr;4(2):265-78. doi: 10.1093/biostatistics/4.2.265.
10
Spatio-temporal models with errors in covariates: mapping Ohio lung cancer mortality.协变量存在误差的时空模型:绘制俄亥俄州肺癌死亡率地图
Stat Med. 1998 Sep 30;17(18):2025-43. doi: 10.1002/(sici)1097-0258(19980930)17:18<2025::aid-sim865>3.0.co;2-m.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验