Suppr超能文献

空间流行病学领域中的空间测量误差。

Spatial measurement errors in the field of spatial epidemiology.

作者信息

Zhang Zhijie, Manjourides Justin, Cohen Ted, Hu Yi, Jiang Qingwu

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, 200032, China.

Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.

出版信息

Int J Health Geogr. 2016 Jul 1;15(1):21. doi: 10.1186/s12942-016-0049-5.

Abstract

BACKGROUND

Spatial epidemiology has been aided by advances in geographic information systems, remote sensing, global positioning systems and the development of new statistical methodologies specifically designed for such data. Given the growing popularity of these studies, we sought to review and analyze the types of spatial measurement errors commonly encountered during spatial epidemiological analysis of spatial data.

METHODS

Google Scholar, Medline, and Scopus databases were searched using a broad set of terms for papers indexed by a term indicating location (space or geography or location or position) and measurement error (measurement error or measurement inaccuracy or misclassification or uncertainty): we reviewed all papers appearing before December 20, 2014. These papers and their citations were reviewed to identify the relevance to our review.

RESULTS

We were able to define and classify spatial measurement errors into four groups: (1) pure spatial location measurement errors, including both non-instrumental errors (multiple addresses, geocoding errors, outcome aggregations, and covariate aggregation) and instrumental errors; (2) location-based outcome measurement error (purely outcome measurement errors and missing outcome measurements); (3) location-based covariate measurement errors (address proxies); and (4) Covariate-Outcome spatial misaligned measurement errors. We propose how these four classes of errors can be unified within an integrated theoretical model and possible solutions were discussed.

CONCLUSION

Spatial measurement errors are ubiquitous threat to the validity of spatial epidemiological studies. We propose a systematic framework for understanding the various mechanisms which generate spatial measurement errors and present practical examples of such errors.

摘要

背景

地理信息系统、遥感、全球定位系统的发展以及专门为此类数据设计的新统计方法的开发,推动了空间流行病学的发展。鉴于此类研究越来越受欢迎,我们试图回顾和分析在空间数据的空间流行病学分析中常见的空间测量误差类型。

方法

使用一组宽泛的术语在谷歌学术、医学在线数据库和Scopus数据库中搜索论文,这些术语包括表示位置(空间、地理、位置或方位)和测量误差(测量误差、测量不准确、错误分类或不确定性)的索引词:我们回顾了2014年12月20日前出现的所有论文。对这些论文及其引用文献进行回顾,以确定与我们的综述的相关性。

结果

我们能够将空间测量误差定义并分类为四组:(1)纯空间位置测量误差,包括非仪器误差(多个地址、地理编码错误、结果汇总和协变量汇总)和仪器误差;(2)基于位置的结果测量误差(纯结果测量误差和结果测量缺失);(3)基于位置的协变量测量误差(地址替代物);以及(4)协变量-结果空间错位测量误差。我们提出了如何在一个综合理论模型中统一这四类误差,并讨论了可能的解决方案。

结论

空间测量误差是对空间流行病学研究有效性普遍存在的威胁。我们提出了一个系统框架,用于理解产生空间测量误差的各种机制,并给出此类误差的实际例子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c14/4930612/862a2ae3d4a5/12942_2016_49_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验