Suppr超能文献

以醋酸根离子与1,2 - 二氯乙烷的气相S(N)2反应为例看化学反应性的非绝热模型

Perspective on Diabatic Models of Chemical Reactivity as Illustrated by the Gas-Phase S(N)2 Reaction of Acetate Ion with 1,2-Dichloroethane.

作者信息

Valero Rosendo, Song Lingchun, Gao Jiali, Truhlar Donald G

机构信息

Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431.

出版信息

J Chem Theory Comput. 2009 Jan 1;5(1):1-22. doi: 10.1021/ct800318h.

Abstract

Diabatic models are widely employed for studying chemical reactivity in condensed phases and enzymes, but there has been little discussion of the pros and cons of various diabatic representations for this purpose. Here we discuss and contrast six different schemes for computing diabatic potentials for a charge rearrangement reaction. They include (i) the variational diabatic configurations (VDC) constructed by variationally optimizing individual valence bond structures and (ii) the consistent diabatic configurations (CDC) obtained by variationally optimizing the ground-state adiabatic energy, both in the nonorthogonal molecular orbital valence bond (MOVB) method, along with the orthogonalized (iii) VDC-MOVB and (iv) CDC-MOVB models. In addition, we consider (v) the fourfold way (based on diabatic molecular orbitals and configuration uniformity), and (vi) empirical valence bond (EVB) theory. To make the considerations concrete, we calculate diabatic electronic states and diabatic potential energies along the reaction path that connects the reactant and the product ion-molecule complexes of the gas-phase bimolecular nucleophilic substitution (S(N)2) reaction of 1,2-dichloethane (DCE) with acetate ion, which is a model reaction corresponding to the reaction catalyzed by haloalkane dehalogenase. We utilize ab initio block-localized molecular orbital theory to construct the MOVB diabatic states and ab initio multi-configuration quasidegenerate perturbation theory to construct the fourfold-way diabatic states; the latter are calculated at reaction path geometries obtained with the M06-2X density functional. The EVB diabatic states are computed with parameters taken from the literature. The MOVB and fourfold-way adiabatic and diabatic potential energy profiles along the reaction path are in qualitative but not quantitative agreement with each other. In order to validate that these wave-function-based diabatic states are qualitatively correct, we show that the reaction energy and barrier for the adiabatic ground state, obtained with these methods, agree reasonably well with the results of high-level calculations using the composite G3SX and G3SX(MP3) methods and the BMC-CCSD multi-coefficient correlation method. However, a comparison of the EVB gas-phase adiabatic ground-state reaction path with those obtained from MOVB and with the fourfold way reveals that the EVB reaction path geometries show a systematic shift towards the products region, and that the EVB lowest-energy path has a much lower barrier. The free energies of solvation and activation energy in water reported from dynamical calculations based on EVB also imply a low activation barrier in the gas phase. In addition, calculations of the free energy of solvation using the recently proposed SM8 continuum solvation model with CM4M partial atomic charges lead to an activation barrier in reasonable agreement with experiment only when the geometries and the gas-phase barrier are those obtained from electronic structure calculations, i.e., methods i-v. These comparisons show the danger of basing the diabatic states on molecular mechanics without the explicit calculation of electronic wave functions. Furthermore, comparison of schemes i-v with one another shows that significantly different quantitative results can be obtained by using different methods for extracting diabatic states from wave function calculations, and it is important for each user to justify the choice of diabatization method in the context of its intended use.

摘要

非绝热模型被广泛用于研究凝聚相和酶中的化学反应性,但对于为此目的使用的各种非绝热表示法的优缺点却很少有讨论。在此,我们讨论并对比了用于计算电荷重排反应非绝热势的六种不同方案。它们包括:(i) 通过变分优化单个价键结构构建的变分非绝热构型(VDC),以及(ii) 在非正交分子轨道价键(MOVB)方法中通过变分优化基态绝热能量获得的一致非绝热构型(CDC),还有正交化的(iii) VDC - MOVB和(iv) CDC - MOVB模型。此外,我们考虑(v) 四重态方法(基于非绝热分子轨道和构型均匀性),以及(vi) 经验价键(EVB)理论。为了使讨论具体,我们计算了沿着连接1,二氯乙烷(DCE)与醋酸根离子的气相双分子亲核取代(S(N)2)反应的反应物和产物离子-分子复合物的反应路径的非绝热电子态和非绝热势能,这是一个与卤代烷脱卤酶催化反应相对应的模型反应。我们利用从头算块定域分子轨道理论构建MOVB非绝热态,并利用从头算多构型准简并微扰理论构建四重态非绝热态;后者是在使用M06 - 2X密度泛函获得的反应路径几何构型上进行计算的。EVB非绝热态是根据文献中的参数计算的。沿着反应路径的MOVB和四重态绝热及非绝热势能曲线在定性上但非定量上相互一致。为了验证这些基于波函数的非绝热态在定性上是正确的,我们表明,用这些方法获得的绝热基态的反应能量和势垒与使用复合G3SX和G3SX(MP3)方法以及BMC - CCSD多系数相关方法的高水平计算结果相当吻合。然而,将EVB气相绝热基态反应路径与从MOVB和四重态方法获得的反应路径进行比较发现,EVB反应路径几何构型向产物区域有系统的偏移,并且EVB最低能量路径的势垒要低得多。基于EVB的动力学计算报告的水中溶剂化自由能和活化能也意味着气相中的活化势垒较低。此外,使用最近提出的带有CM4M部分原子电荷的SM8连续介质溶剂化模型计算溶剂化自由能,仅当几何构型和气相势垒是从电子结构计算(即方法i - v)获得时,才会得到与实验合理一致的活化势垒。这些比较显示了在不明确计算电子波函数的情况下基于分子力学构建非绝热态的危险性。此外,方案i - v之间的比较表明,使用不同方法从波函数计算中提取非绝热态会得到显著不同的定量结果,并且每个用户在其预期用途的背景下证明非绝热化方法的选择是合理的很重要。

相似文献

4
A Non-Orthogonal Block-Localized Effective Hamiltonian Approach for Chemical and Enzymatic Reactions.
J Chem Theory Comput. 2010 Jul 13;6(7):2242-2251. doi: 10.1021/ct1001686.
5
A diabatic representation including both valence nonadiabatic interactions and spin-orbit effects for reaction dynamics.
J Phys Chem A. 2007 Sep 6;111(35):8536-51. doi: 10.1021/jp072590u. Epub 2007 Aug 11.
6
Diabatic-At-Construction Method for Diabatic and Adiabatic Ground and Excited States Based on Multistate Density Functional Theory.
J Chem Theory Comput. 2017 Mar 14;13(3):1176-1187. doi: 10.1021/acs.jctc.6b01176. Epub 2017 Feb 13.
10
Target State Optimized Density Functional Theory for Electronic Excited and Diabatic States.
J Chem Theory Comput. 2023 Mar 28;19(6):1777-1789. doi: 10.1021/acs.jctc.2c01317. Epub 2023 Mar 14.

引用本文的文献

1
Nucleophilic Substitution (S 2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent.
Chemphyschem. 2018 Jun 5;19(11):1315-1330. doi: 10.1002/cphc.201701363. Epub 2018 Apr 19.
3
Biochemistry and theory of proton-coupled electron transfer.
Chem Rev. 2014 Apr 9;114(7):3381-465. doi: 10.1021/cr4006654. Epub 2014 Apr 1.
4
Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory.
Phys Chem Chem Phys. 2011 Apr 21;13(15):6760-75. doi: 10.1039/c0cp02206c. Epub 2011 Mar 2.
5
On the Interfragment Exchange in the X-Pol Method.
J Chem Theory Comput. 2010;6(8):2469-2476. doi: 10.1021/ct100268p.
7
On unjustifiably misrepresenting the EVB approach while simultaneously adopting it.
J Phys Chem B. 2009 Aug 6;113(31):10905-15. doi: 10.1021/jp901709f.

本文引用的文献

1
Valence Bond Diagrams and Chemical Reactivity.
Angew Chem Int Ed Engl. 1999 Mar 1;38(5):586-625. doi: 10.1002/(SICI)1521-3773(19990301)38:5<586::AID-ANIE586>3.0.CO;2-T.
3
Polarization Effects in Aqueous and Nonaqueous Solutions.
J Chem Theory Comput. 2007 Nov;3(6):2055-67. doi: 10.1021/ct7001539.
4
Charge Model 4 and Intramolecular Charge Polarization.
J Chem Theory Comput. 2007 Nov;3(6):2046-54. doi: 10.1021/ct7001607.
6
Empirical Valence-Bond Models for Reactive Potential Energy Surfaces Using Distributed Gaussians.
J Chem Theory Comput. 2006 Jul;2(4):905-11. doi: 10.1021/ct600084p.
7
Multireference Model Chemistries for Thermochemical Kinetics.
J Chem Theory Comput. 2008 Aug;4(8):1208-19. doi: 10.1021/ct800077r.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验