Suppr超能文献

用于电子激发态和非绝热态的目标态优化密度泛函理论

Target State Optimized Density Functional Theory for Electronic Excited and Diabatic States.

作者信息

Zhang Jun, Tang Zhen, Zhang Xiaoyong, Zhu Hong, Zhao Ruoqi, Lu Yangyi, Gao Jiali

机构信息

Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China.

School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.

出版信息

J Chem Theory Comput. 2023 Mar 28;19(6):1777-1789. doi: 10.1021/acs.jctc.2c01317. Epub 2023 Mar 14.

Abstract

A flexible self-consistent field method, called target state optimization (TSO), is presented for exploring electronic excited configurations and localized diabatic states. The key idea is to partition molecular orbitals into different subspaces according to the excitation or localization pattern for a target state. Because of the orbital-subspace constraint, orbitals belonging to different subspaces do not mix. Furthermore, the determinant wave function for such excited or diabatic configurations can be variationally optimized as a ground state procedure, unlike conventional ΔSCF methods, without the possibility of collapsing back to the ground state or other lower-energy configurations. The TSO method can be applied both in Hartree-Fock theory and in Kohn-Sham density functional theory (DFT). The density projection procedure and the working equations for implementing the TSO method are described along with several illustrative applications. For valence excited states of organic compounds, it was found that the computed excitation energies from TSO-DFT and time-dependent density functional theory (TD-DFT) are of similar quality with average errors of 0.5 and 0.4 eV, respectively. For core excitation, doubly excited states and charge-transfer states, the performance of TSO-DFT is clearly superior to that from conventional TD-DFT calculations. It is shown that variationally optimized charge-localized diabatic states can be defined using TSO-DFT in energy decomposition analysis to gain both qualitative and quantitative insights on intermolecular interactions. Alternatively, the variational diabatic states may be used in molecular dynamics simulation of charge transfer processes. The TSO method can also be used to define basis states in multistate density functional theory for excited states through nonorthogonal state interaction calculations. The software implementing TSO-DFT can be accessed from the authors.

摘要

本文提出了一种灵活的自洽场方法——目标态优化(TSO),用于探索电子激发构型和定域非绝热态。其核心思想是根据目标态的激发或定域模式将分子轨道划分为不同的子空间。由于轨道子空间约束,属于不同子空间的轨道不会混合。此外,与传统的ΔSCF方法不同,这种激发或非绝热构型的行列式波函数可以作为基态程序进行变分优化,不会坍缩回基态或其他低能构型。TSO方法可应用于Hartree-Fock理论和Kohn-Sham密度泛函理论(DFT)。文中描述了实现TSO方法的密度投影过程和工作方程,并给出了几个示例应用。对于有机化合物的价激发态,发现TSO-DFT计算得到的心能与含时密度泛函理论(TD-DFT)计算得到的激发能质量相似,平均误差分别为0.5 eV和0.4 eV。对于芯激发、双激发态和电荷转移态,TSO-DFT的性能明显优于传统TD-DFT计算。结果表明,在能量分解分析中使用TSO-DFT可以定义变分优化的电荷定域非绝热态,从而对分子间相互作用获得定性和定量的认识。或者,变分非绝热态可用于电荷转移过程的分子动力学模拟。TSO方法还可用于通过非正交态相互作用计算在多态密度泛函理论中定义激发态的基态。实现TSO-DFT的软件可从作者处获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验