Suppr超能文献

肾脏的分子解剖学:从基因表达和功能基因组学中我们学到了什么?

Molecular anatomy of the kidney: what have we learned from gene expression and functional genomics?

机构信息

Institute for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia.

出版信息

Pediatr Nephrol. 2010 Jun;25(6):1005-16. doi: 10.1007/s00467-009-1392-6. Epub 2010 Jan 5.

Abstract

The discipline of paediatric nephrology encompasses the congenital nephritic syndromes, renal dysplasias, neonatal renal tumours, early onset cystic disease, tubulopathies and vesicoureteric reflux, all of which arise due to defects in normal kidney development. Indeed, congenital anomalies of the kidney and urinary tract (CAKUT) represent 20-30% of prenatal anomalies, occurring in 1 in 500 births. Developmental biologists have studied the anatomical and morphogenetic processes involved in kidney development for the last five decades. However, with the advent of transgenic mice, the sequencing of the genome, improvements in mutation detection and the advent of functional genomics, our understanding of the molecular basis of kidney development has grown significantly. Here we discuss how the advent of new genetic and genomics approaches has added to our understanding of kidney development and paediatric renal disease, as well as identifying areas in which we are still lacking knowledge.

摘要

小儿肾脏病学涵盖了先天性肾病综合征、肾发育不良、新生儿肾肿瘤、早期囊性疾病、肾小管病和膀胱输尿管反流等,这些疾病都是由于正常肾脏发育过程中的缺陷引起的。事实上,先天性肾和尿路异常(CAKUT)占产前异常的 20-30%,每 500 例出生中就有 1 例发生。过去五十年,发育生物学家一直在研究肾脏发育所涉及的解剖和形态发生过程。然而,随着转基因小鼠的出现、基因组测序、突变检测的改进以及功能基因组学的出现,我们对肾脏发育的分子基础的理解有了显著的提高。在这里,我们将讨论新的遗传和基因组学方法的出现如何帮助我们加深对肾脏发育和儿科肾脏疾病的理解,并确定我们仍然缺乏知识的领域。

相似文献

1
Molecular anatomy of the kidney: what have we learned from gene expression and functional genomics?
Pediatr Nephrol. 2010 Jun;25(6):1005-16. doi: 10.1007/s00467-009-1392-6. Epub 2010 Jan 5.
2
[Genetics of congenital anomalies of the kidney and urinary tract].
Postepy Hig Med Dosw (Online). 2011 Dec 15;65:829-37. doi: 10.5604/17322693.970290.
3
Criteria for HNF1B analysis in patients with congenital abnormalities of kidney and urinary tract.
Nephrol Dial Transplant. 2015 May;30(5):835-42. doi: 10.1093/ndt/gfu370. Epub 2014 Dec 13.
4
Ontogeny of congenital anomalies of the kidney and urinary tract, CAKUT.
Pediatr Int. 2003 Oct;45(5):598-604. doi: 10.1046/j.1442-200x.2003.01777.x.
5
[What is new in pediatric nephrology?].
Arch Pediatr. 2006 Jan;13(1):64-8. doi: 10.1016/j.arcped.2005.10.009. Epub 2005 Nov 28.
6
Congenital anomalies of kidney and urinary tract.
Semin Nephrol. 2010 Jul;30(4):374-86. doi: 10.1016/j.semnephrol.2010.06.004.
7
Genetic Syndromes Affecting Kidney Development.
Results Probl Cell Differ. 2017;60:257-279. doi: 10.1007/978-3-319-51436-9_10.
8
Congenital anomalies of the kidney and urinary tract: an embryogenetic review.
Birth Defects Res C Embryo Today. 2014 Dec;102(4):374-81. doi: 10.1002/bdrc.21084. Epub 2014 Nov 25.
10
Renal abnormalities and their developmental origin.
Nat Rev Genet. 2007 Oct;8(10):791-802. doi: 10.1038/nrg2205.

引用本文的文献

1
Characterization of the human fetal gonad and reproductive tract by single-cell transcriptomics.
Dev Cell. 2024 Feb 26;59(4):529-544.e5. doi: 10.1016/j.devcel.2024.01.006. Epub 2024 Jan 30.
2
Developmental Programming of Renal Function and Re-Programming Approaches.
Front Pediatr. 2018 Feb 27;6:36. doi: 10.3389/fped.2018.00036. eCollection 2018.
3
A brief review of kidney development, maturation, developmental abnormalities, and drug toxicity: juvenile animal relevancy.
J Toxicol Pathol. 2017 Apr;30(2):125-133. doi: 10.1293/tox.2017-0006. Epub 2017 Feb 11.
4
Each niche has an actor: multiple stem cell niches in the preterm kidney.
Ital J Pediatr. 2015 Oct 15;41:78. doi: 10.1186/s13052-015-0187-6.
6
Stromal cells in tissue homeostasis: balancing regeneration and fibrosis.
Nat Rev Nephrol. 2013 Dec;9(12):747-53. doi: 10.1038/nrneph.2013.152. Epub 2013 Aug 13.
7
Ion channels in renal disease.
Chem Rev. 2012 Dec 12;112(12):6353-72. doi: 10.1021/cr3001077. Epub 2012 Jul 18.
8
Early risk factors for neonatal mortality in CAKUT: analysis of 524 affected newborns.
Pediatr Nephrol. 2012 Jun;27(6):965-72. doi: 10.1007/s00467-012-2107-y. Epub 2012 Mar 9.
9
Clinical course of 822 children with prenatally detected nephrouropathies.
Clin J Am Soc Nephrol. 2012 Mar;7(3):444-51. doi: 10.2215/CJN.03400411. Epub 2012 Jan 19.
10
The GUDMAP database--an online resource for genitourinary research.
Development. 2011 Jul;138(13):2845-53. doi: 10.1242/dev.063594.

本文引用的文献

1
Mapping of the fate of cell lineages generated from cells that express the Wnt4 gene by time-lapse during kidney development.
Differentiation. 2010 Jan;79(1):57-64. doi: 10.1016/j.diff.2009.08.006. Epub 2009 Sep 9.
3
MicroRNAs and the kidney: coming of age.
Curr Opin Nephrol Hypertens. 2009 Jul;18(4):317-23. doi: 10.1097/MNH.0b013e32832c9da2.
4
Analysis of Drosophila segmentation network identifies a JNK pathway factor overexpressed in kidney cancer.
Science. 2009 Feb 27;323(5918):1218-22. doi: 10.1126/science.1157669. Epub 2009 Jan 22.
5
Multipotent stem cells in the Malpighian tubules of adult Drosophila melanogaster.
J Exp Biol. 2009 Feb;212(Pt 3):413-23. doi: 10.1242/jeb.024216.
6
Transgenic mice and their impact on kidney research.
Pflugers Arch. 2009 May;458(1):211-22. doi: 10.1007/s00424-008-0624-0. Epub 2008 Dec 16.
7
Atlas of gene expression in the developing kidney at microanatomic resolution.
Dev Cell. 2008 Nov;15(5):781-91. doi: 10.1016/j.devcel.2008.09.007.
8
The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm.
Nature. 2009 Jan 15;457(7227):322-6. doi: 10.1038/nature07526. Epub 2008 Oct 29.
10
Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury.
J Am Soc Nephrol. 2008 Nov;19(11):2069-75. doi: 10.1681/ASN.2008020162. Epub 2008 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验