Suppr超能文献

活性氧的信号转导功能。

Signaling functions of reactive oxygen species.

机构信息

University of California, 5200 North Lake Road, Merced, California 95344, USA.

出版信息

Biochemistry. 2010 Feb 9;49(5):835-42. doi: 10.1021/bi9020378.

Abstract

We review signaling by reactive oxygen species, which is emerging as a major physiological process. However, among the reactive oxygen species, H(2)O(2) best fulfills the requirements of being a second messenger. Its enzymatic production and degradation, along with the requirements for the oxidation of thiols by H(2)O(2), provide the specificity for time and place that are required in signaling. Both thermodynamic and kinetic considerations suggest that among possible oxidation states of cysteine, formation of sulfenic acid derivatives or disulfides can be relevant as thiol redox switches in signaling. In this work, the general constraints that are required for protein thiol oxidation by H(2)O(2) to be fast enough to be relevant for signaling are discussed in light of the mechanism of oxidation of the catalytic cysteine or selenocysteine in thiol peroxidases. While the nonenzymatic reaction between thiol and H(2)O(2) is, in most cases, too slow to be relevant in signaling, the enzymatic catalysis of thiol oxidation by these peroxidases provides a potential mechanism for redox signaling.

摘要

我们回顾了活性氧信号转导,它正在成为一种主要的生理过程。然而,在活性氧中,H(2)O(2)最能满足作为第二信使的要求。其酶促产生和降解,以及 H(2)O(2)氧化巯基的要求,为信号转导提供了时间和空间的特异性。热力学和动力学考虑表明,在半胱氨酸可能的氧化态中,形成亚磺酸衍生物或二硫化物可以作为信号转导中的巯基氧化还原开关相关。在这项工作中,根据硫醇过氧化物酶中催化半胱氨酸或硒代半胱氨酸氧化的机制,讨论了 H(2)O(2)使蛋白质巯基氧化足够快以与信号转导相关所需的一般约束条件。虽然巯基与 H(2)O(2)之间的非酶反应在大多数情况下太慢而与信号转导无关,但这些过氧化物酶的巯基氧化的酶催化为氧化还原信号提供了一种潜在的机制。

相似文献

1
Signaling functions of reactive oxygen species.
Biochemistry. 2010 Feb 9;49(5):835-42. doi: 10.1021/bi9020378.
2
The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs.
Antioxid Redox Signal. 2018 Mar 1;28(7):558-573. doi: 10.1089/ars.2017.7162. Epub 2017 Jul 17.
3
Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite.
Subcell Biochem. 2007;44:83-113. doi: 10.1007/978-1-4020-6051-9_5.
4
Kinetics of formation and reactivity of the persulfide in the one-cysteine peroxiredoxin from .
J Biol Chem. 2019 Sep 13;294(37):13593-13605. doi: 10.1074/jbc.RA119.008883. Epub 2019 Jul 16.
5
Reactive oxygen species and alpha,beta-unsaturated aldehydes as second messengers in signal transduction.
Ann N Y Acad Sci. 2010 Aug;1203:35-44. doi: 10.1111/j.1749-6632.2010.05551.x.
6
The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies.
Arch Biochem Biophys. 2017 Feb 15;616:40-46. doi: 10.1016/j.abb.2017.01.008. Epub 2017 Jan 23.
7
Differential Kinetics of Two-Cysteine Peroxiredoxin Disulfide Formation Reveal a Novel Model for Peroxide Sensing.
Biochemistry. 2018 Jun 19;57(24):3416-3424. doi: 10.1021/acs.biochem.8b00188. Epub 2018 Mar 30.
8
An unexplored role for Peroxiredoxin in exercise-induced redox signalling?
Redox Biol. 2016 Aug;8:51-8. doi: 10.1016/j.redox.2015.10.003. Epub 2015 Dec 25.
9
A comparison of thiol peroxidase mechanisms.
Antioxid Redox Signal. 2011 Aug 1;15(3):763-80. doi: 10.1089/ars.2010.3397. Epub 2010 Nov 1.
10
Thiol chemistry in peroxidase catalysis and redox signaling.
Antioxid Redox Signal. 2008 Sep;10(9):1549-64. doi: 10.1089/ars.2008.2063.

引用本文的文献

5
An Overview of Oxidative Stress in Sex Chromosome Aneuploidies in Pediatric Populations.
Antioxidants (Basel). 2025 Apr 29;14(5):531. doi: 10.3390/antiox14050531.
7
Oxidative stress in vascular surgical diseases: mechanisms, impacts and therapeutic perspectives.
Front Pharmacol. 2025 Apr 9;16:1527684. doi: 10.3389/fphar.2025.1527684. eCollection 2025.
10

本文引用的文献

1
Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16163-8. doi: 10.1073/pnas.0903015106. Epub 2009 Sep 10.
2
Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme.
Biochim Biophys Acta. 2009 Nov;1790(11):1486-500. doi: 10.1016/j.bbagen.2009.04.007. Epub 2009 Apr 17.
3
Glutathionylation regulates cytosolic NADP+-dependent isocitrate dehydrogenase activity.
Free Radic Res. 2009 Apr;43(4):409-16. doi: 10.1080/10715760902801525. Epub 2009 Mar 17.
4
S-glutathionylation impairs signal transducer and activator of transcription 3 activation and signaling.
Endocrinology. 2009 Mar;150(3):1122-31. doi: 10.1210/en.2008-1241. Epub 2008 Nov 6.
5
The catalytic site of glutathione peroxidases.
Antioxid Redox Signal. 2008 Sep;10(9):1515-26. doi: 10.1089/ars.2008.2055.
6
Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome.
FEBS J. 2008 Jun;275(11):2942-55. doi: 10.1111/j.1742-4658.2008.06441.x. Epub 2008 Apr 23.
7
Inhibition of caspase-3 activity and activation by protein glutathionylation.
Biochem Pharmacol. 2008 Jun 1;75(11):2234-44. doi: 10.1016/j.bcp.2008.02.026. Epub 2008 Feb 29.
8
SHP-1 inhibition by 4-hydroxynonenal activates Jun N-terminal kinase and glutamate cysteine ligase.
Am J Respir Cell Mol Biol. 2008 Jul;39(1):97-104. doi: 10.1165/rcmb.2007-0371OC. Epub 2008 Feb 14.
9
Peroxiredoxins in bacterial antioxidant defense.
Subcell Biochem. 2007;44:143-93. doi: 10.1007/978-1-4020-6051-9_7.
10
Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite.
Subcell Biochem. 2007;44:83-113. doi: 10.1007/978-1-4020-6051-9_5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验