Zhang Jing, Li Pengju, Yue Jiping, Meng Lingyuan, Li Wen, Yang Chuanwang, Kim Saehyun, Cheng Zhe, Kamath Ananth, Siahrostami Samira, Tian Bozhi
The James Franck Institute, The University of Chicago, Chicago, IL, USA.
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
Nat Nanotechnol. 2025 Apr 15. doi: 10.1038/s41565-025-01878-4.
Nano-enabled catalysis at the interface of metals and semiconductors has found numerous applications, but its role in mediating cellular responses is still largely unexplored. Here we explore the territory by examining the once elusive mechanism through which a nanoporous silicon-based photocatalyst facilitates the two-electron oxidation of water to generate hydrogen peroxide under physiological conditions. We achieve precise modulation of intracellular stress granule formation by the controlled photoelectrochemical production of hydrogen peroxide in the extracellular environment, thereby enhancing cellular resilience to significant oxidative stress. This photoelectrochemical strategy has been evaluated for its efficacy in treating myocardial ischaemia-reperfusion injury in an ex vivo rodent model. Our data suggest that a pretreatment regimen involving photoelectrochemical generation of hydrogen peroxide at mild concentrations mitigates myocardial ischaemia-reperfusion-induced functional decline and infarction. These findings suggest a viable wireless therapeutic intervention for managing ischaemic disease and highlight the biomedical potential of nanostructured semiconductor-based catalytic devices.
金属与半导体界面的纳米催化已得到广泛应用,但其在介导细胞反应中的作用仍 largely unexplored。在此,我们通过研究一种基于纳米多孔硅的光催化剂在生理条件下促进水的双电子氧化以生成过氧化氢的难以捉摸的机制来探索这一领域。我们通过在细胞外环境中可控地光电化学生产过氧化氢,实现了对细胞内应激颗粒形成的精确调节,从而增强细胞对显著氧化应激的恢复能力。这种光电化学策略已在离体啮齿动物模型中评估了其治疗心肌缺血再灌注损伤的疗效。我们的数据表明,一种涉及在温和浓度下光电化学生成过氧化氢的预处理方案可减轻心肌缺血再灌注诱导的功能衰退和梗死。这些发现表明了一种用于管理缺血性疾病的可行的无线治疗干预方法,并突出了基于纳米结构半导体的催化装置的生物医学潜力。