Suppr超能文献

用于细胞内凝聚物光电化学调控的金修饰纳米多孔硅

Gold-modified nanoporous silicon for photoelectrochemical regulation of intracellular condensates.

作者信息

Zhang Jing, Li Pengju, Yue Jiping, Meng Lingyuan, Li Wen, Yang Chuanwang, Kim Saehyun, Cheng Zhe, Kamath Ananth, Siahrostami Samira, Tian Bozhi

机构信息

The James Franck Institute, The University of Chicago, Chicago, IL, USA.

Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.

出版信息

Nat Nanotechnol. 2025 Apr 15. doi: 10.1038/s41565-025-01878-4.

Abstract

Nano-enabled catalysis at the interface of metals and semiconductors has found numerous applications, but its role in mediating cellular responses is still largely unexplored. Here we explore the territory by examining the once elusive mechanism through which a nanoporous silicon-based photocatalyst facilitates the two-electron oxidation of water to generate hydrogen peroxide under physiological conditions. We achieve precise modulation of intracellular stress granule formation by the controlled photoelectrochemical production of hydrogen peroxide in the extracellular environment, thereby enhancing cellular resilience to significant oxidative stress. This photoelectrochemical strategy has been evaluated for its efficacy in treating myocardial ischaemia-reperfusion injury in an ex vivo rodent model. Our data suggest that a pretreatment regimen involving photoelectrochemical generation of hydrogen peroxide at mild concentrations mitigates myocardial ischaemia-reperfusion-induced functional decline and infarction. These findings suggest a viable wireless therapeutic intervention for managing ischaemic disease and highlight the biomedical potential of nanostructured semiconductor-based catalytic devices.

摘要

金属与半导体界面的纳米催化已得到广泛应用,但其在介导细胞反应中的作用仍 largely unexplored。在此,我们通过研究一种基于纳米多孔硅的光催化剂在生理条件下促进水的双电子氧化以生成过氧化氢的难以捉摸的机制来探索这一领域。我们通过在细胞外环境中可控地光电化学生产过氧化氢,实现了对细胞内应激颗粒形成的精确调节,从而增强细胞对显著氧化应激的恢复能力。这种光电化学策略已在离体啮齿动物模型中评估了其治疗心肌缺血再灌注损伤的疗效。我们的数据表明,一种涉及在温和浓度下光电化学生成过氧化氢的预处理方案可减轻心肌缺血再灌注诱导的功能衰退和梗死。这些发现表明了一种用于管理缺血性疾病的可行的无线治疗干预方法,并突出了基于纳米结构半导体的催化装置的生物医学潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验