Suppr超能文献

双半胱氨酸过氧化物酶二硫键形成的差异动力学揭示了一种新型的过氧化物传感模型。

Differential Kinetics of Two-Cysteine Peroxiredoxin Disulfide Formation Reveal a Novel Model for Peroxide Sensing.

作者信息

Portillo-Ledesma Stephanie, Randall Lía M, Parsonage Derek, Dalla Rizza Joaquín, Karplus P Andrew, Poole Leslie B, Denicola Ana, Ferrer-Sueta Gerardo

机构信息

Laboratorio de I+D de Moléculas Bioactivas, CENUR Litoral Norte , Universidad de la República , Paysandú , Uruguay.

Department of Biochemistry and Centers for Structural Biology and for Redox Biology and Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States.

出版信息

Biochemistry. 2018 Jun 19;57(24):3416-3424. doi: 10.1021/acs.biochem.8b00188. Epub 2018 Mar 30.

Abstract

Two-cysteine peroxiredoxins (Prx) have a three-step catalytic cycle consisting of (1) reduction of peroxide and formation of sulfenic acid on the enzyme, (2) condensation of the sulfenic acid with a thiol to form disulfide, also known as resolution, and (3) reduction of the disulfide by a reductant protein. By following changes in protein fluorescence, we have studied the pH dependence of reaction 2 in human peroxiredoxins 1, 2, and 5 and in Salmonella typhimurium AhpC and obtained rate constants for the reaction and p K values of the thiol and sulfenic acid involved for each system. The observed reaction 2 rate constant spans 2 orders of magnitude, but in all cases, reaction 2 appears to be slow compared to the same reaction in small-molecule systems, making clear the rates are limited by conformational features of the proteins. For each Prx, reaction 2 will become rate-limiting at some critical steady-state concentration of HO producing the accumulation of Prx as sulfenic acid. When this happens, an alternative and faster-resolving Prx (or other peroxidase) may take over the antioxidant role. The accumulation of sulfenic acid Prx at distinct concentrations of HO is embedded in the kinetic limitations of the catalytic cycle and may constitute the basis of a HO-mediated redox signal transduction pathway requiring neither inactivation nor posttranslational modification. The differences in the rate constants of resolution among Prx coexisting in the same compartment may partially explain their complementation in antioxidant function and stepwise sensing of HO concentration.

摘要

双半胱氨酸过氧化物酶(Prx)具有一个三步催化循环,包括:(1)过氧化物的还原以及酶上亚磺酸的形成;(2)亚磺酸与硫醇缩合形成二硫键,也称为解离;(3)由还原蛋白将二硫键还原。通过跟踪蛋白质荧光的变化,我们研究了人过氧化物酶1、2和5以及鼠伤寒沙门氏菌AhpC中反应2的pH依赖性,并获得了每个系统中该反应的速率常数以及所涉及硫醇和亚磺酸的pK值。观察到的反应2速率常数跨越2个数量级,但在所有情况下,与小分子系统中的相同反应相比,反应2似乎都较慢,这清楚地表明速率受蛋白质构象特征的限制。对于每种Prx,在产生亚磺酸形式的Prx积累的某些关键稳态浓度的HO下,反应2将成为限速步骤。当这种情况发生时,另一种更快解离的Prx(或其他过氧化物酶)可能会接管抗氧化作用。亚磺酸Prx在不同浓度HO下的积累嵌入在催化循环的动力学限制中,可能构成既不需要失活也不需要翻译后修饰的HO介导的氧化还原信号转导途径的基础。同一区室中共存的Prx之间解离速率常数的差异可能部分解释了它们在抗氧化功能和HO浓度逐步传感中的互补作用。

相似文献

1
Differential Kinetics of Two-Cysteine Peroxiredoxin Disulfide Formation Reveal a Novel Model for Peroxide Sensing.
Biochemistry. 2018 Jun 19;57(24):3416-3424. doi: 10.1021/acs.biochem.8b00188. Epub 2018 Mar 30.
2
Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite.
Subcell Biochem. 2007;44:83-113. doi: 10.1007/978-1-4020-6051-9_5.
3
Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine.
J Biol Chem. 2013 May 17;288(20):14170-14177. doi: 10.1074/jbc.M113.460881. Epub 2013 Mar 29.
5
The Role of Peroxiredoxins in the Transduction of HO Signals.
Antioxid Redox Signal. 2018 Mar 1;28(7):537-557. doi: 10.1089/ars.2017.7167. Epub 2017 Jul 10.
6
Kinetics of formation and reactivity of the persulfide in the one-cysteine peroxiredoxin from .
J Biol Chem. 2019 Sep 13;294(37):13593-13605. doi: 10.1074/jbc.RA119.008883. Epub 2019 Jul 16.
7
The bicarbonate/carbon dioxide pair increases hydrogen peroxide-mediated hyperoxidation of human peroxiredoxin 1.
J Biol Chem. 2019 Sep 20;294(38):14055-14067. doi: 10.1074/jbc.RA119.008825. Epub 2019 Jul 30.
8
The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs.
Antioxid Redox Signal. 2018 Mar 1;28(7):558-573. doi: 10.1089/ars.2017.7162. Epub 2017 Jul 17.
9
Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC.
Biochemistry. 2015 Feb 24;54(7):1567-75. doi: 10.1021/bi501515w. Epub 2015 Feb 10.

引用本文的文献

2
Interaction between 1-Cys peroxiredoxin and ascorbate in the response to HO exposure in Pseudomonas aeruginosa.
Redox Biol. 2025 Jul;84:103658. doi: 10.1016/j.redox.2025.103658. Epub 2025 May 8.
3
Cytoglobin scavenges intracellular hydrogen peroxide and regulates redox signals in the vasculature.
Redox Biol. 2025 Jun;83:103633. doi: 10.1016/j.redox.2025.103633. Epub 2025 Apr 12.
4
Mechanism of glutathionylation of the active site thiols of peroxiredoxin 2.
J Biol Chem. 2025 Apr 11;301(5):108503. doi: 10.1016/j.jbc.2025.108503.
5
Origins of Ultrasensitivity and Complex Signaling Dynamics of Cellular Hydrogen Peroxide and Peroxiredoxin.
Antioxidants (Basel). 2025 Feb 18;14(2):235. doi: 10.3390/antiox14020235.
6
Tetrahydrobiopterin as a rheostat of cell resistance to oxidant injury.
Redox Biol. 2025 Feb;79:103447. doi: 10.1016/j.redox.2024.103447. Epub 2024 Nov 30.
8
Cold-adapted characteristics and gene knockout of alkyl hydroperoxide reductase subunit C in Antarctic Psychrobacter sp. ANT206.
World J Microbiol Biotechnol. 2024 Oct 21;40(11):359. doi: 10.1007/s11274-024-04158-w.

本文引用的文献

1
A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation.
Nat Chem Biol. 2018 Feb;14(2):148-155. doi: 10.1038/nchembio.2536. Epub 2017 Dec 18.
2
Biological Production, Detection, and Fate of Hydrogen Peroxide.
Antioxid Redox Signal. 2018 Aug 20;29(6):541-551. doi: 10.1089/ars.2017.7425. Epub 2017 Dec 14.
3
The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs.
Antioxid Redox Signal. 2018 Mar 1;28(7):558-573. doi: 10.1089/ars.2017.7162. Epub 2017 Jul 17.
4
The Role of Peroxiredoxins in the Transduction of HO Signals.
Antioxid Redox Signal. 2018 Mar 1;28(7):537-557. doi: 10.1089/ars.2017.7167. Epub 2017 Jul 10.
5
Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2.
J Biol Chem. 2017 May 26;292(21):8705-8715. doi: 10.1074/jbc.M116.767657. Epub 2017 Mar 27.
6
Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress.
Redox Biol. 2017 Apr;11:613-619. doi: 10.1016/j.redox.2016.12.035. Epub 2017 Jan 5.
7
Peroxiredoxin Catalysis at Atomic Resolution.
Structure. 2016 Oct 4;24(10):1668-1678. doi: 10.1016/j.str.2016.07.012. Epub 2016 Sep 1.
8
Glutathionylation of the Active Site Cysteines of Peroxiredoxin 2 and Recycling by Glutaredoxin.
J Biol Chem. 2016 Feb 5;291(6):3053-62. doi: 10.1074/jbc.M115.692798. Epub 2015 Nov 24.
10
Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC.
Biochemistry. 2015 Feb 24;54(7):1567-75. doi: 10.1021/bi501515w. Epub 2015 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验