Portillo-Ledesma Stephanie, Randall Lía M, Parsonage Derek, Dalla Rizza Joaquín, Karplus P Andrew, Poole Leslie B, Denicola Ana, Ferrer-Sueta Gerardo
Laboratorio de I+D de Moléculas Bioactivas, CENUR Litoral Norte , Universidad de la República , Paysandú , Uruguay.
Department of Biochemistry and Centers for Structural Biology and for Redox Biology and Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States.
Biochemistry. 2018 Jun 19;57(24):3416-3424. doi: 10.1021/acs.biochem.8b00188. Epub 2018 Mar 30.
Two-cysteine peroxiredoxins (Prx) have a three-step catalytic cycle consisting of (1) reduction of peroxide and formation of sulfenic acid on the enzyme, (2) condensation of the sulfenic acid with a thiol to form disulfide, also known as resolution, and (3) reduction of the disulfide by a reductant protein. By following changes in protein fluorescence, we have studied the pH dependence of reaction 2 in human peroxiredoxins 1, 2, and 5 and in Salmonella typhimurium AhpC and obtained rate constants for the reaction and p K values of the thiol and sulfenic acid involved for each system. The observed reaction 2 rate constant spans 2 orders of magnitude, but in all cases, reaction 2 appears to be slow compared to the same reaction in small-molecule systems, making clear the rates are limited by conformational features of the proteins. For each Prx, reaction 2 will become rate-limiting at some critical steady-state concentration of HO producing the accumulation of Prx as sulfenic acid. When this happens, an alternative and faster-resolving Prx (or other peroxidase) may take over the antioxidant role. The accumulation of sulfenic acid Prx at distinct concentrations of HO is embedded in the kinetic limitations of the catalytic cycle and may constitute the basis of a HO-mediated redox signal transduction pathway requiring neither inactivation nor posttranslational modification. The differences in the rate constants of resolution among Prx coexisting in the same compartment may partially explain their complementation in antioxidant function and stepwise sensing of HO concentration.
双半胱氨酸过氧化物酶(Prx)具有一个三步催化循环,包括:(1)过氧化物的还原以及酶上亚磺酸的形成;(2)亚磺酸与硫醇缩合形成二硫键,也称为解离;(3)由还原蛋白将二硫键还原。通过跟踪蛋白质荧光的变化,我们研究了人过氧化物酶1、2和5以及鼠伤寒沙门氏菌AhpC中反应2的pH依赖性,并获得了每个系统中该反应的速率常数以及所涉及硫醇和亚磺酸的pK值。观察到的反应2速率常数跨越2个数量级,但在所有情况下,与小分子系统中的相同反应相比,反应2似乎都较慢,这清楚地表明速率受蛋白质构象特征的限制。对于每种Prx,在产生亚磺酸形式的Prx积累的某些关键稳态浓度的HO下,反应2将成为限速步骤。当这种情况发生时,另一种更快解离的Prx(或其他过氧化物酶)可能会接管抗氧化作用。亚磺酸Prx在不同浓度HO下的积累嵌入在催化循环的动力学限制中,可能构成既不需要失活也不需要翻译后修饰的HO介导的氧化还原信号转导途径的基础。同一区室中共存的Prx之间解离速率常数的差异可能部分解释了它们在抗氧化功能和HO浓度逐步传感中的互补作用。