Hazen S L, Ford D A, Gross R W
Molecular and Cellular Cardiovascular Biochemistry Division, Washington University School of Medicine, St. Louis 63110.
J Biol Chem. 1991 Mar 25;266(9):5629-33.
Recently, the prototype of a novel class of calcium-independent plasmalogen-selective phospholipase A2 activities was identified in the cytosolic fraction of canine myocardium (Wolf, R.A., and Gross, R.W. (1985) J. Biol. Chem. 260, 7295-7303) and subsequently purified and characterized (Hazen, S.L., Stuppy, R.J., and Gross, R.W. (1990) J. Biol. Chem. 265, 10622-10630). We now demonstrate that 15 min of myocardial ischemia utilizing a rabbit Langendorf perfused heart model results in a 10-fold increase in membrane-associated calcium-independent phospholipase A2 activity whose detection is entirely dependent upon utilization of plasmalogen substrate. Ischemia-induced phospholipase activity was identified as a membrane bound member of this class of phospholipases A2 by demonstration of: 1) concomitant production of lysoplasmenylcholine and sn-2 fatty acid from plasmenylcholine substrate; 2) maximal enzymatic activity in the absence of calcium ion; and 3) a 16-fold higher maximum reaction velocity utilizing plasmenylcholine compared to phosphatidylcholine substrate at multiple surface concentrations. Ischemia-induced phospholipase A2 activity was specifically localized to the microsomal fraction and could not be solubilized by sonication, salt treatment, exposure to chelators, or utilization of submicellar concentrations of detergent. The appearance of microsomal phospholipase A2 activity did not require ischemia-induced transcription or translation since identical increases in enzymic activity were obtained in hearts previously treated with actinomycin D and cycloheximide. Collectively, these results demonstrate that a membrane-associated calcium-independent phospholipase A2 that selectively hydrolyzes plasmalogen molecular species is the likely enzymic mediator of accelerated phospholipid catabolism during early myocardial ischemia.
最近,在犬心肌的胞质部分鉴定出了一类新型的不依赖钙的缩醛磷脂选择性磷脂酶A2活性的原型(Wolf, R.A., and Gross, R.W. (1985) J. Biol. Chem. 260, 7295 - 7303),随后对其进行了纯化和表征(Hazen, S.L., Stuppy, R.J., and Gross, R.W. (1990) J. Biol. Chem. 265, 10622 - 10630)。我们现在证明,利用兔Langendorff灌注心脏模型进行15分钟的心肌缺血会导致膜相关的不依赖钙的磷脂酶A2活性增加10倍,其检测完全依赖于缩醛磷脂底物的使用。通过以下证明,缺血诱导的磷脂酶活性被鉴定为这类磷脂酶A2的膜结合成员:1)从缩醛磷脂酰胆碱底物同时产生溶血缩醛磷脂酰胆碱和sn - 2脂肪酸;2)在无钙离子的情况下具有最大酶活性;3)在多个表面浓度下,与磷脂酰胆碱底物相比,利用缩醛磷脂酰胆碱时最大反应速度高16倍。缺血诱导的磷脂酶A2活性特异性定位于微粒体部分,不能通过超声处理、盐处理、暴露于螯合剂或使用亚胶束浓度的去污剂来溶解。微粒体磷脂酶A2活性的出现不需要缺血诱导的转录或翻译,因为在用放线菌素D和环己酰亚胺预处理的心脏中获得了相同的酶活性增加。总的来说,这些结果表明,一种选择性水解缩醛磷脂分子种类的膜相关不依赖钙的磷脂酶A2可能是早期心肌缺血期间磷脂分解加速的酶介导物。