Suppr超能文献

寡聚体阵列中病毒 RNA 依赖性 RNA 聚合酶的酶和非酶功能。

Enzymatic and nonenzymatic functions of viral RNA-dependent RNA polymerases within oligomeric arrays.

机构信息

1Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

RNA. 2010 Feb;16(2):382-93. doi: 10.1261/rna.1955410. Epub 2010 Jan 5.

Abstract

Few antivirals are effective against positive-strand RNA viruses, primarily because the high error rate during replication of these viruses leads to the rapid development of drug resistance. One of the favored current targets for the development of antiviral compounds is the active site of viral RNA-dependent RNA polymerases. However, like many subcellular processes, replication of the genomes of all positive-strand RNA viruses occurs in highly oligomeric complexes on the cytosolic surfaces of the intracellular membranes of infected host cells. In this study, catalytically inactive polymerases were shown to participate productively in functional oligomer formation and catalysis, as assayed by RNA template elongation. Direct protein transduction to introduce either active or inactive polymerases into cells infected with mutant virus confirmed the structural role for polymerase molecules during infection. Therefore, we suggest that targeting the active sites of polymerase molecules is not likely to be the best antiviral strategy, as inactivated polymerases do not inhibit replication of other viruses in the same cell and can, in fact, be useful in RNA replication complexes. On the other hand, polymerases that could not participate in functional RNA replication complexes were those that contained mutations in the amino terminus, leading to altered contacts in the folded polymerase and mutations in a known polymerase-polymerase interaction in the two-dimensional protein lattice. Thus, the functional nature of multimeric arrays of RNA-dependent RNA polymerase supplies a novel target for antiviral compounds and provides a new appreciation for enzymatic catalysis on membranous surfaces within cells.

摘要

针对正链 RNA 病毒的抗病毒药物寥寥无几,主要是因为这些病毒在复制过程中的高错误率导致了耐药性的迅速发展。目前开发抗病毒化合物的一个热门目标是病毒 RNA 依赖性 RNA 聚合酶的活性位点。然而,与许多细胞内过程一样,所有正链 RNA 病毒基因组的复制都是在感染宿主细胞的细胞内膜的细胞质表面的高度聚合复合物中进行的。在这项研究中,研究表明,无催化活性的聚合酶能够有效地参与功能性寡聚体的形成和催化,这可以通过 RNA 模板延伸来测定。直接将蛋白质转导到感染突变病毒的细胞中,以确认聚合酶分子在感染过程中的结构作用。因此,我们认为针对聚合酶分子的活性位点不太可能是最佳的抗病毒策略,因为失活的聚合酶不会抑制同一细胞中其他病毒的复制,实际上在 RNA 复制复合物中可能有用。另一方面,不能参与功能性 RNA 复制复合物的聚合酶是那些在氨基末端发生突变的聚合酶,导致折叠聚合酶中的接触改变以及二维蛋白质晶格中已知的聚合酶-聚合酶相互作用中的突变。因此,RNA 依赖性 RNA 聚合酶的多聚体阵列的功能性质为抗病毒化合物提供了一个新的靶标,并为细胞内膜上的酶催化提供了新的认识。

相似文献

1
Enzymatic and nonenzymatic functions of viral RNA-dependent RNA polymerases within oligomeric arrays.
RNA. 2010 Feb;16(2):382-93. doi: 10.1261/rna.1955410. Epub 2010 Jan 5.
2
Interstitial contacts in an RNA-dependent RNA polymerase lattice.
J Mol Biol. 2011 Sep 30;412(4):737-50. doi: 10.1016/j.jmb.2011.07.053. Epub 2011 Aug 3.
3
Structure-function relationships underlying the replication fidelity of viral RNA-dependent RNA polymerases.
J Virol. 2015 Jan;89(1):275-86. doi: 10.1128/JVI.01574-14. Epub 2014 Oct 15.
4
Non-nucleoside Inhibitors of Zika Virus RNA-Dependent RNA Polymerase.
J Virol. 2020 Oct 14;94(21). doi: 10.1128/JVI.00794-20.
6
Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase.
Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22505-10. doi: 10.1073/pnas.1007626107. Epub 2010 Dec 10.
7
Picornaviral polymerase structure, function, and fidelity modulation.
Virus Res. 2017 Apr 15;234:4-20. doi: 10.1016/j.virusres.2017.01.026. Epub 2017 Feb 2.
9
The VIZIER project: preparedness against pathogenic RNA viruses.
Antiviral Res. 2008 Apr;78(1):37-46. doi: 10.1016/j.antiviral.2007.10.013. Epub 2007 Nov 29.

引用本文的文献

1
Quasispecies Nature of RNA Viruses: Lessons from the Past.
Vaccines (Basel). 2023 Jan 30;11(2):308. doi: 10.3390/vaccines11020308.
3
Hepatitis E virus RNA-dependent RNA polymerase is involved in RNA replication and infectious particle production.
Hepatology. 2022 Jan;75(1):170-181. doi: 10.1002/hep.32100. Epub 2021 Dec 8.
4
Quantifying the roles of space and stochasticity in computer simulations for cell biology and cellular biochemistry.
Mol Biol Cell. 2021 Jan 15;32(2):186-210. doi: 10.1091/mbc.E20-08-0530. Epub 2020 Nov 25.
5
Picornaviral polymerase domain exchanges reveal a modular basis for distinct biochemical activities of viral RNA-dependent RNA polymerases.
J Biol Chem. 2020 Jul 31;295(31):10624-10637. doi: 10.1074/jbc.RA120.013906. Epub 2020 Jun 3.
6
Structural Biology of the Enterovirus Replication-Linked 5'-Cloverleaf RNA and Associated Virus Proteins.
Microbiol Mol Biol Rev. 2020 Mar 18;84(2). doi: 10.1128/MMBR.00062-19. Print 2020 May 20.
7
Polymerase Activity, Protein-Protein Interaction, and Cellular Localization of the Usutu Virus NS5 Protein.
Antimicrob Agents Chemother. 2019 Dec 20;64(1). doi: 10.1128/AAC.01573-19.
8
Insight Into the Interaction Between RNA Polymerase and VPg for Murine Norovirus Replication.
Front Microbiol. 2018 Jul 3;9:1466. doi: 10.3389/fmicb.2018.01466. eCollection 2018.
10
Structure and Function of Caliciviral RNA Polymerases.
Viruses. 2017 Nov 6;9(11):329. doi: 10.3390/v9110329.

本文引用的文献

1
Bypass suppression of small-plaque phenotypes by a mutation in poliovirus 2A that enhances apoptosis.
J Virol. 2009 Oct;83(19):10129-39. doi: 10.1128/JVI.00642-09. Epub 2009 Jul 22.
5
Picornavirus genome replication: assembly and organization of the VPg uridylylation ribonucleoprotein (initiation) complex.
J Biol Chem. 2007 Jun 1;282(22):16202-13. doi: 10.1074/jbc.M610608200. Epub 2007 Mar 27.
7
Stabilization of poliovirus polymerase by NTP binding and fingers-thumb interactions.
J Mol Biol. 2007 Mar 9;366(5):1459-74. doi: 10.1016/j.jmb.2006.11.070. Epub 2006 Dec 1.
8
Transcription factories: structures conserved during differentiation and evolution.
Biochem Soc Trans. 2006 Dec;34(Pt 6):1133-7. doi: 10.1042/BST0341133.
9
10
Structure and function of RNA replication.
Annu Rev Microbiol. 2006;60:305-26. doi: 10.1146/annurev.micro.60.080805.142248.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验