Department of Biomedical Informatics, Stanford University, Stanford, CA 94305, USA.
J Mol Biol. 2011 Sep 30;412(4):737-50. doi: 10.1016/j.jmb.2011.07.053. Epub 2011 Aug 3.
Catalytic activities can be facilitated by ordered enzymatic arrays that co-localize and orient enzymes and their substrates. The purified RNA-dependent RNA polymerase from poliovirus self-assembles to form two-dimensional lattices, possibly facilitating the assembly of viral RNA replication complexes on the cytoplasmic face of intracellular membranes. Creation of a two-dimensional lattice requires at least two different molecular contacts between polymerase molecules. One set of polymerase contacts, between the "thumb" domain of one polymerase and the back of the "palm" domain of another, has been previously defined. To identify the second interface needed for lattice formation and to test its function in viral RNA synthesis, we used a hybrid approach of electron microscopic and biochemical evaluation of both wild-type and mutant viral polymerases to evaluate computationally generated models of this second interface. A unique solution satisfied all constraints and predicted a two-dimensional structure formed from antiparallel arrays of polymerase fibers that use contacts from the flexible amino-terminal region of the protein. Enzymes that contained mutations in this newly defined interface did not form lattices and altered the structure of wild-type lattices. When reconstructed into virus, mutations that disrupt lattice assembly exhibited growth defects, synthetic lethality or both, supporting the function of the oligomeric lattice in infected cells. Understanding the structure of polymerase lattices within the multimeric RNA-dependent RNA polymerase complex should facilitate antiviral drug design and provide a precedent for other positive-strand RNA viruses.
催化活性可以通过有序的酶阵列来促进,这些酶阵列可以使酶及其底物共定位和定向。脊髓灰质炎病毒的纯化 RNA 依赖性 RNA 聚合酶自身组装形成二维晶格,可能有助于病毒 RNA 复制复合物在内质网膜的细胞质侧组装。形成二维晶格至少需要聚合酶分子之间的两种不同的分子接触。一组聚合酶接触,一个聚合酶的“拇指”结构域和另一个聚合酶的“手掌”结构域的背面之间的接触,已经被先前定义。为了确定形成晶格所需的第二个界面,并测试其在病毒 RNA 合成中的功能,我们使用电子显微镜和生化评估的混合方法来评估野生型和突变型病毒聚合酶的这第二个界面,并对其进行计算建模。一个独特的解决方案满足了所有的约束条件,并预测了一个由聚合酶纤维的反平行阵列形成的二维结构,该结构使用蛋白质的灵活氨基末端区域的接触。在这个新定义的界面中含有突变的酶不能形成晶格,并改变了野生型晶格的结构。当被重建为病毒时,破坏晶格组装的突变表现出生长缺陷、合成致死或两者兼而有之,支持了感染细胞中寡聚晶格的功能。了解多聚体 RNA 依赖性 RNA 聚合酶复合物中聚合酶晶格的结构应该有助于抗病毒药物的设计,并为其他正链 RNA 病毒提供先例。