Suppr超能文献

微小核糖核酸病毒聚合酶的结构、功能及保真度调控

Picornaviral polymerase structure, function, and fidelity modulation.

作者信息

Peersen Olve B

机构信息

Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, United States.

出版信息

Virus Res. 2017 Apr 15;234:4-20. doi: 10.1016/j.virusres.2017.01.026. Epub 2017 Feb 2.

Abstract

Like all positive strand RNA viruses, the picornaviruses replicate their genomes using a virally encoded RNA-dependent RNA polymerase enzyme known as 3D. Over the past decade we have made tremendous advances in our understanding of 3D structure and function, including the discovery of a novel mechanism for closing the active site that allows these viruses to easily fine tune replication fidelity and quasispecies distributions. This review summarizes current knowledge of picornaviral polymerase structure and how the enzyme interacts with RNA and other viral proteins to form stable and processive elongation complexes. The picornaviral RdRPs are among the smallest viral polymerases, but their fundamental molecular mechanism for catalysis appears to be generally applicable as a common feature of all positive strand RNA virus polymerases.

摘要

像所有正链RNA病毒一样,小核糖核酸病毒利用一种名为3D的病毒编码的RNA依赖性RNA聚合酶来复制其基因组。在过去十年中,我们对3D的结构和功能的理解取得了巨大进展,包括发现了一种关闭活性位点的新机制,使这些病毒能够轻松微调复制保真度和准种分布。本综述总结了目前关于小核糖核酸病毒聚合酶结构的知识,以及该酶如何与RNA和其他病毒蛋白相互作用以形成稳定且持续的延伸复合物。小核糖核酸病毒的RNA依赖性RNA聚合酶是最小的病毒聚合酶之一,但其基本的催化分子机制似乎普遍适用于所有正链RNA病毒聚合酶的共同特征。

相似文献

1
Picornaviral polymerase structure, function, and fidelity modulation.
Virus Res. 2017 Apr 15;234:4-20. doi: 10.1016/j.virusres.2017.01.026. Epub 2017 Feb 2.
2
Structure-function relationships underlying the replication fidelity of viral RNA-dependent RNA polymerases.
J Virol. 2015 Jan;89(1):275-86. doi: 10.1128/JVI.01574-14. Epub 2014 Oct 15.
3
Picornavirus RNA polyadenylation by 3D(pol), the viral RNA-dependent RNA polymerase.
Virus Res. 2015 Aug 3;206:3-11. doi: 10.1016/j.virusres.2014.12.030. Epub 2015 Jan 3.
4
Picornaviral polymerase domain exchanges reveal a modular basis for distinct biochemical activities of viral RNA-dependent RNA polymerases.
J Biol Chem. 2020 Jul 31;295(31):10624-10637. doi: 10.1074/jbc.RA120.013906. Epub 2020 Jun 3.
5
Picornavirus RNA-dependent RNA polymerase.
Int J Biochem Cell Biol. 2009 Mar;41(3):498-502. doi: 10.1016/j.biocel.2008.03.019. Epub 2008 Apr 7.
6
Non-template functions of viral RNA in picornavirus replication.
Curr Opin Virol. 2011 Nov;1(5):339-46. doi: 10.1016/j.coviro.2011.09.005.
8
Design of a Genetically Stable High Fidelity Coxsackievirus B3 Polymerase That Attenuates Virus Growth in Vivo.
J Biol Chem. 2016 Jul 1;291(27):13999-14011. doi: 10.1074/jbc.M116.726596. Epub 2016 May 2.
10
Molecular dynamics simulations of viral RNA polymerases link conserved and correlated motions of functional elements to fidelity.
J Mol Biol. 2011 Jul 1;410(1):159-81. doi: 10.1016/j.jmb.2011.04.078. Epub 2011 May 7.

引用本文的文献

3
Mapping mutational fitness effects across the coxsackievirus B3 proteome reveals distinct profiles of mutation tolerability.
PLoS Biol. 2024 Jul 16;22(7):e3002709. doi: 10.1371/journal.pbio.3002709. eCollection 2024 Jul.
5
Multiple functions of the nonstructural protein 3D in picornavirus infection.
Front Immunol. 2024 Apr 2;15:1365521. doi: 10.3389/fimmu.2024.1365521. eCollection 2024.
6
Insights into In Vitro Adaptation of EV71 and Analysis of Reduced Virulence by In Silico Predictions.
Vaccines (Basel). 2023 Mar 11;11(3):629. doi: 10.3390/vaccines11030629.
7
RNA-Dependent RNA Polymerase of the Second Human Pegivirus Exhibits a High-Fidelity Feature.
Microbiol Spectr. 2022 Oct 26;10(5):e0272922. doi: 10.1128/spectrum.02729-22. Epub 2022 Aug 18.
9
A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase.
Nat Commun. 2022 Feb 2;13(1):621. doi: 10.1038/s41467-022-28113-1.
10
Within and Beyond the Nucleotide Addition Cycle of Viral RNA-dependent RNA Polymerases.
Front Mol Biosci. 2022 Jan 10;8:822218. doi: 10.3389/fmolb.2021.822218. eCollection 2021.

本文引用的文献

1
A structural view of the RNA-dependent RNA polymerases from the Flavivirus genus.
Virus Res. 2017 Apr 15;234:34-43. doi: 10.1016/j.virusres.2017.01.020. Epub 2017 Jan 25.
2
Structure(s), function(s), and inhibition of the RNA-dependent RNA polymerase of noroviruses.
Virus Res. 2017 Apr 15;234:21-33. doi: 10.1016/j.virusres.2016.12.018. Epub 2016 Dec 29.
3
Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance.
J Virol. 2016 Sep 12;90(19):8410-21. doi: 10.1128/JVI.00078-16. Print 2016 Oct 1.
4
Peptide Synthesis on a Next-Generation DNA Sequencing Platform.
Chembiochem. 2016 Sep 2;17(17):1628-35. doi: 10.1002/cbic.201600298. Epub 2016 Jul 6.
5
Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):E4005-14. doi: 10.1073/pnas.1602591113. Epub 2016 Jun 23.
6
ATP Is an Allosteric Inhibitor of Coxsackievirus B3 Polymerase.
Biochemistry. 2016 Jul 19;55(28):3995-4002. doi: 10.1021/acs.biochem.6b00467. Epub 2016 Jul 6.
7
Design of a Genetically Stable High Fidelity Coxsackievirus B3 Polymerase That Attenuates Virus Growth in Vivo.
J Biol Chem. 2016 Jul 1;291(27):13999-14011. doi: 10.1074/jbc.M116.726596. Epub 2016 May 2.
8
RNA Recombination Enhances Adaptability and Is Required for Virus Spread and Virulence.
Cell Host Microbe. 2016 Apr 13;19(4):493-503. doi: 10.1016/j.chom.2016.03.009.
9
Sequence specificity for uridylylation of the viral peptide linked to the genome (VPg) of enteroviruses.
Virology. 2015 Oct;484:80-85. doi: 10.1016/j.virol.2015.05.016. Epub 2015 Jun 11.
10
The Phyre2 web portal for protein modeling, prediction and analysis.
Nat Protoc. 2015 Jun;10(6):845-58. doi: 10.1038/nprot.2015.053. Epub 2015 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验