Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA.
Genome Res. 2010 Feb;20(2):228-38. doi: 10.1101/gr.101063.109. Epub 2010 Jan 6.
In eukaryotic cells, chromatin reorganizes within promoters of active genes to allow the transcription machinery and various transcription factors to access DNA. In this model, promoter-specific transcription factors bind DNA to initiate the production of mRNA in a tightly regulated manner. In the case of the human malaria parasite, Plasmodium falciparum, specific transcription factors are apparently underrepresented with regards to the size of the genome, and mechanisms underlying transcriptional regulation are controversial. Here, we investigate the modulation of DNA accessibility by chromatin remodeling during the parasite infection cycle. We have generated genome-wide maps of nucleosome occupancy across the parasite erythrocytic cycle using two complementary assays--the formaldehyde-assisted isolation of regulatory elements to extract protein-free DNA (FAIRE) and the MNase-mediated purification of mononucleosomes to extract histone-bound DNA (MAINE), both techniques being coupled to high-throughput sequencing. We show that chromatin architecture undergoes drastic upheavals throughout the parasite's cycle, contrasting with targeted chromatin reorganization usually observed in eukaryotes. Chromatin loosens after the invasion of the red blood cell and then repacks prior to the next cycle. Changes in nucleosome occupancy within promoter regions follow this genome-wide pattern, with a few exceptions such as the var genes involved in virulence and genes expressed at early stages of the cycle. We postulate that chromatin structure and nucleosome turnover control massive transcription during the erythrocytic cycle. Our results demonstrate that the processes driving gene expression in Plasmodium challenge the classical eukaryotic model of transcriptional regulation occurring mostly at the transcription initiation level.
在真核细胞中,染色质在活性基因的启动子内重新组织,以允许转录机制和各种转录因子访问 DNA。在这个模型中,启动子特异性转录因子结合 DNA 以起始 mRNA 的严格调控产生。在人类疟疾寄生虫疟原虫的情况下,与基因组的大小相比,特定的转录因子显然明显不足,并且转录调控的机制存在争议。在这里,我们研究了染色质重塑在寄生虫感染周期中对 DNA 可及性的调节。我们使用两种互补的测定法(甲醛辅助分离调节元件以提取无蛋白 DNA(FAIRE)和 MNase 介导的单核小体纯化以提取组蛋白结合 DNA(MAINE))在寄生虫红细胞周期中生成了全基因组核小体占有率图谱,这两种技术都与高通量测序相结合。我们表明,染色质结构在寄生虫周期中发生了剧烈的动荡,与通常在真核生物中观察到的靶向染色质重排形成对比。在红细胞入侵后,染色质变松,然后在进入下一个周期之前重新包装。启动子区域内核小体占有率的变化遵循这种全基因组模式,但也有一些例外,例如与毒力有关的 var 基因和在周期早期表达的基因。我们假设染色质结构和核小体周转率控制红细胞周期中的大量转录。我们的结果表明,驱动疟原虫基因表达的过程挑战了主要发生在转录起始水平的经典真核转录调控模型。