National Center for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic.
J Phys Chem A. 2010 Feb 4;114(4):1985-95. doi: 10.1021/jp9100619.
Principal values of the (13)C chemical shift tensor (CST) are measured for two biologically interesting and structurally related compounds, hypoxanthine and 6-mercaptopurine, and differences in the values are discussed with an attempt to reveal chemical shifts sensitive to substitution and prototropic tautomerism in the purine ring. Furthermore, methods of density-functional theory (DFT) are used to calculate principal values of the (13)C chemical shift tensor and orientations of the principal components. Values calculated for isolated molecules are compared to those for several supramolecular clusters and then to experimental data to investigate the degree of modulation of the (13)C CSTs by molecular packing. Focusing on the protonated carbons, C2 and C8, which are crucial for relaxation measurements, we show that neglecting intermolecular interactions can lead to errors as large as 30 ppm in the delta(22) principal component. This has significant implications for the studies of molecular dynamics, employing spin relaxation, in large fragments of nucleic acids at high magnetic fields.
(13)C 化学位移张量(CST)的主要数值已针对两种具有生物学意义且结构相关的化合物(次黄嘌呤和 6-巯基嘌呤)进行了测量,并对这些数值的差异进行了讨论,试图揭示嘌呤环中取代和质子互变异构敏感的化学位移。此外,密度泛函理论(DFT)方法还被用于计算(13)C 化学位移张量的主要数值和主分量的取向。将孤立分子的计算值与几个超分子簇的计算值进行了比较,然后与实验数据进行了比较,以研究分子堆积对(13)C CST 的调制程度。我们重点研究了对弛豫测量至关重要的质子化碳原子 C2 和 C8,结果表明,忽略分子间相互作用可能会导致 δ(22)主分量的误差高达 30 ppm。这对于在高磁场下研究大的核酸分子片段中的分子动力学,利用自旋弛豫,具有重要意义。