Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, USA.
J Phys Chem B. 2010 Nov 18;114(45):14178-88. doi: 10.1021/jp908064y. Epub 2010 Jan 7.
Pulse electron paramagnetic resonance (EPR) spectroscopy is employed at two very different excitation frequencies, 9.77 and 30.67 GHz, in the study of the nitrogen coordination environment of the Mn(III)Mn(IV) state of the dimanganese-containing catalases from Lactobacillus plantarum and Thermus thermophilus. Consistent with previous studies, the lower-frequency results reveal one unique histidine nitrogen-Mn cluster interaction. For the first time, a second, more strongly hyperfine-coupled (14)N atom is unambiguously observed through the use of higher frequency/higher field EPR spectroscopy. The low excitation frequency spectral features are rationalized as arising from the interaction of a histidine nitrogen that is bound to the Mn(IV) ion, and the higher excitation frequency features are attributed to the histidine nitrogen bound to the Mn(III) ion. These results allow for the computation of intrinsic hyperfine coupling constants, which range from 2.2 to 2.9 MHz, for sp(2)-hybridized nitrogens coordinating equatorially to high-valence Mn ions. The relevance of these findings is discussed in the context of recent results from analogous higher frequency EPR studies of the Mn cluster in photosystem II and other exchange-coupled, transition metal-containing systems.
脉搏电子顺磁共振(EPR)光谱学在两个非常不同的激发频率下使用,9.77 和 30.67 GHz,研究了植物乳杆菌和嗜热脂肪芽孢杆菌中双锰含锰过氧化氢酶的 Mn(III)Mn(IV)态的氮配位环境。与先前的研究一致,较低频率的结果揭示了一个独特的组氨酸氮-Mn 簇相互作用。首次通过使用更高频率/更高场 EPR 光谱学,明确观察到第二个更强的超精细耦合(14)N 原子。低频激发光谱特征可以合理地归因于与 Mn(IV)离子结合的组氨酸氮的相互作用,而更高激发频率特征归因于与 Mn(III)离子结合的组氨酸氮。这些结果允许计算与 sp(2)-杂化氮配位到高价 Mn 离子的内在超精细耦合常数,范围从 2.2 到 2.9 MHz。这些发现的相关性在最近类似的光合作用系统 II 和其他交换耦合、含过渡金属的系统中锰簇的更高频率 EPR 研究结果的背景下进行了讨论。