Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA.
J Am Chem Soc. 2012 Jan 25;134(3):1504-12. doi: 10.1021/ja203465y. Epub 2012 Jan 9.
The synthesis of efficient water-oxidation catalysts demands insight into the only known, naturally occurring water-oxidation catalyst, the oxygen-evolving complex (OEC) of photosystem II (PSII). Understanding the water oxidation mechanism requires knowledge of where and when substrate water binds to the OEC. Mn catalase in its Mn(III)-Mn(IV) state is a protein model of the OEC's S(2) state. From (17)O-labeled water exchanged into the di-μ-oxo di-Mn(III,IV) coordination sphere of Mn catalase, CW Q-band ENDOR spectroscopy revealed two distinctly different (17)O signals incorporated in distinctly different time regimes. First, a signal appearing after 2 h of (17)O exchange was detected with a 13.0 MHz hyperfine coupling. From similarity in the time scale of isotope incorporation and in the (17)O μ-oxo hyperfine coupling of the di-μ-oxo di-Mn(III,IV) bipyridine model (Usov, O. M.; Grigoryants, V. M.; Tagore, R.; Brudvig, G. W.; Scholes, C. P. J. Am. Chem. Soc. 2007, 129, 11886-11887), this signal was assigned to μ-oxo oxygen. EPR line broadening was obvious from this (17)O μ-oxo species. Earlier exchange proceeded on the minute or faster time scale into a non-μ-oxo position, from which (17)O ENDOR showed a smaller 3.8 MHz hyperfine coupling and possible quadrupole splittings, indicating a terminal water of Mn(III). Exchangeable proton/deuteron hyperfine couplings, consistent with terminal water ligation to Mn(III), also appeared. Q-band CW ENDOR from the S(2) state of the OEC was obtained following multihour (17)O exchange, which showed a (17)O hyperfine signal with a 11 MHz hyperfine coupling, tentatively assigned as μ-oxo-(17)O by resemblance to the μ-oxo signals from Mn catalase and the di-μ-oxo di-Mn(III,IV) bipyridine model.
高效水氧化催化剂的合成需要深入了解唯一已知的天然水氧化催化剂,即光合作用系统 II(PSII)的放氧复合物(OEC)。了解水氧化机制需要知道底物水何时何地结合到 OEC。Mn 过氧化氢酶在其 Mn(III)-Mn(IV)状态下是 OEC 的 S(2)状态的蛋白质模型。从 Mn 过氧化氢酶的二μ-氧二-Mn(III,IV)配位球中交换的(17)O 标记水,CW Q 带 ENDOR 光谱显示出两种截然不同的(17)O 信号,它们在不同的时间范围内被掺入。首先,在(17)O 交换 2 小时后检测到一个信号,该信号具有 13.0 MHz 的超精细耦合。由于同位素掺入的时间尺度和二μ-氧二-Mn(III,IV)联吡啶模型的(17)O μ-氧超精细耦合的相似性(Usov,O.M.;Grigoryants,V.M.;Tagore,R.;Brudvig,G.W.;Scholes,C.P. J. Am. Chem. Soc. 2007, 129, 11886-11887),该信号被分配给μ-氧。从这种(17)Oμ-氧物种中可以明显看出 EPR 线展宽。较早的交换在分钟或更快的时间尺度上进行到非μ-氧位置,从该位置(17)O ENDOR 显示出较小的 3.8 MHz 超精细耦合和可能的四极分裂,表明 Mn(III)的末端水。还出现了与 Mn(III)末端水配位一致的可交换质子/氘核超精细耦合。通过多小时(17)O 交换获得了 OEC 的 S(2)态的 Q 带 CW ENDOR,该谱显示出(17)O 超精细信号,其超精细耦合为 11 MHz,通过与 Mn 过氧化氢酶和二μ-氧二-Mn(III,IV)联吡啶模型的μ-氧信号的相似性,该信号被暂定为μ-氧-(17)O。