Suppr超能文献

与丙氨酸-乙醛酸氨基转移酶早期折叠中间体复合物中的 GroEL 结构。

Structure of GroEL in complex with an early folding intermediate of alanine glyoxylate aminotransferase.

机构信息

Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid E-28006, Spain.

出版信息

J Biol Chem. 2010 Feb 26;285(9):6371-6. doi: 10.1074/jbc.M109.062471. Epub 2010 Jan 7.

Abstract

Primary hyperoxaluria type 1 is a rare autosomal recessive disease caused by mutations in the alanine glyoxylate aminotransferase gene (AGXT). We have previously shown that P11L and I340M polymorphisms together with I244T mutation (AGXT-LTM) represent a conformational disease that could be amenable to pharmacological intervention. Thus, the study of the folding mechanism of AGXT is crucial to understand the molecular basis of the disease. Here, we provide biochemical and structural data showing that AGXT-LTM is able to form non-native folding intermediates. The three-dimensional structure of a complex between the bacterial chaperonin GroEL and a folding intermediate of AGXT-LTM mutant has been solved by cryoelectron microscopy. The electron density map shows the protein substrate in a non-native extended conformation that crosses the GroEL central cavity. Addition of ATP to the complex induces conformational changes on the chaperonin and the internalization of the protein substrate into the folding cavity. The structure provides a three-dimensional picture of an in vivo early ATP-dependent step of the folding reaction cycle of the chaperonin and supports a GroEL functional model in which the chaperonin promotes folding of the AGXT-LTM mutant protein through forced unfolding mechanism.

摘要

原发性高草酸尿症 1 型是一种罕见的常染色体隐性遗传病,由丙氨酸-乙醛酸氨基转移酶基因(AGXT)的突变引起。我们之前已经表明,P11L 和 I340M 多态性加上 I244T 突变(AGXT-LTM)代表一种构象疾病,可能适合药物干预。因此,研究 AGXT 的折叠机制对于理解疾病的分子基础至关重要。在这里,我们提供了生化和结构数据,表明 AGXT-LTM 能够形成非天然折叠中间体。通过冷冻电镜解析了细菌伴侣蛋白 GroEL 与 AGXT-LTM 突变体折叠中间体之间复合物的三维结构。电子密度图显示蛋白质底物处于穿过 GroEL 中心腔的非天然伸展构象。向复合物中添加 ATP 会诱导伴侣蛋白发生构象变化,并将蛋白质底物内化到折叠腔中。该结构提供了伴侣蛋白折叠反应循环中体内早期 ATP 依赖性步骤的三维图像,并支持 GroEL 功能模型,其中伴侣蛋白通过强制展开机制促进 AGXT-LTM 突变蛋白的折叠。

相似文献

1
Structure of GroEL in complex with an early folding intermediate of alanine glyoxylate aminotransferase.
J Biol Chem. 2010 Feb 26;285(9):6371-6. doi: 10.1074/jbc.M109.062471. Epub 2010 Jan 7.
3
Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate.
J Mol Biol. 2015 Sep 11;427(18):2912-8. doi: 10.1016/j.jmb.2015.04.007. Epub 2015 Apr 18.
4
Triggering protein folding within the GroEL-GroES complex.
J Biol Chem. 2008 Nov 14;283(46):32003-13. doi: 10.1074/jbc.M802898200. Epub 2008 Sep 9.
6
Active cage mechanism of chaperonin-assisted protein folding demonstrated at single-molecule level.
J Mol Biol. 2014 Jul 29;426(15):2739-54. doi: 10.1016/j.jmb.2014.04.018. Epub 2014 May 6.
8
GroEL-mediated protein folding.
Protein Sci. 1997 Apr;6(4):743-60. doi: 10.1002/pro.5560060401.
9
Molecular insights into primary hyperoxaluria type 1 pathogenesis.
Front Biosci (Landmark Ed). 2012 Jan 1;17(2):621-34. doi: 10.2741/3948.
10
GroEL stimulates protein folding through forced unfolding.
Nat Struct Mol Biol. 2008 Mar;15(3):303-11. doi: 10.1038/nsmb.1394. Epub 2008 Mar 2.

引用本文的文献

1
Structural and functional analysis of the role of the chaperonin CCT in mTOR complex assembly.
Nat Commun. 2019 Jun 28;10(1):2865. doi: 10.1038/s41467-019-10781-1.
2
Evolutionary Divergent Suppressor Mutations in Conformational Diseases.
Genes (Basel). 2018 Jul 13;9(7):352. doi: 10.3390/genes9070352.
3
Visualizing chaperone-assisted protein folding.
Nat Struct Mol Biol. 2016 Jul;23(7):691-7. doi: 10.1038/nsmb.3237. Epub 2016 May 30.
5
Transient conformational remodeling of folding proteins by GroES-individually and in concert with GroEL.
J Chem Biol. 2013 Oct 5;7(1):1-15. doi: 10.1007/s12154-013-0106-5. eCollection 2013.

本文引用的文献

1
Converging concepts of protein folding in vitro and in vivo.
Nat Struct Mol Biol. 2009 Jun;16(6):574-81. doi: 10.1038/nsmb.1591.
2
3
The role of molecular chaperones in human misfolding diseases.
FEBS Lett. 2009 Aug 20;583(16):2647-53. doi: 10.1016/j.febslet.2009.04.029. Epub 2009 Apr 23.
4
The primary hyperoxalurias.
Kidney Int. 2009 Jun;75(12):1264-1271. doi: 10.1038/ki.2009.32. Epub 2009 Feb 18.
5
Chaperonin complex with a newly folded protein encapsulated in the folding chamber.
Nature. 2009 Jan 1;457(7225):107-10. doi: 10.1038/nature07479.
6
Triggering protein folding within the GroEL-GroES complex.
J Biol Chem. 2008 Nov 14;283(46):32003-13. doi: 10.1074/jbc.M802898200. Epub 2008 Sep 9.
7
Image processing for electron microscopy single-particle analysis using XMIPP.
Nat Protoc. 2008;3(6):977-90. doi: 10.1038/nprot.2008.62.
8
Monitoring protein conformation along the pathway of chaperonin-assisted folding.
Cell. 2008 Apr 4;133(1):142-53. doi: 10.1016/j.cell.2008.01.048.
9
GroEL stimulates protein folding through forced unfolding.
Nat Struct Mol Biol. 2008 Mar;15(3):303-11. doi: 10.1038/nsmb.1394. Epub 2008 Mar 2.
10
Detection and separation of heterogeneity in molecular complexes by statistical analysis of their two-dimensional projections.
J Struct Biol. 2008 Apr;162(1):108-20. doi: 10.1016/j.jsb.2007.11.007. Epub 2007 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验