Suppr超能文献

氧对动态脑自动调节的影响:低碳酸血症的关键作用。

The effect of oxygen on dynamic cerebral autoregulation: critical role of hypocapnia.

机构信息

Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan.

出版信息

J Appl Physiol (1985). 2010 Mar;108(3):538-43. doi: 10.1152/japplphysiol.01235.2009. Epub 2010 Jan 7.

Abstract

Hypoxia is known to impair cerebral autoregulation (CA). Previous studies indicate that CA is profoundly affected by cerebrovascular tone, which is largely determined by the partial pressure of arterial O(2) and CO(2). However, hypoxic-induced hyperventilation via respiratory chemoreflex activation causes hypocapnia, which may influence CA independent of partial pressure of arterial O(2). To identify the effect of O(2) on dynamic cerebral blood flow regulation, we examined the influence of normoxia, isocapnia hyperoxia, hypoxia, and hypoxia with consequent hypocapnia on dynamic CA. We measured heart rate, blood pressure, ventilatory parameters, and middle cerebral artery blood velocity (transcranial Doppler). Dynamic CA was assessed (n = 9) during each of four randomly assigned respiratory interventions: 1) normoxia (21% O(2)); 2) isocapnic hyperoxia (40% O(2)); 3) isocapnic hypoxia (14% O(2)); and 4) hypocapnic hypoxia (14% O(2)). During each condition, the rate of cerebral regulation (RoR), an established index of dynamic CA, was estimated during bilateral thigh cuff-induced transient hypotension. The RoR was unaltered during isocapnic hyperoxia. Isocapnic hypoxia attenuated the RoR (0.202 +/- 0.003/s; 27%; P = 0.043), indicating impairment in dynamic CA. In contrast, hypocapnic hypoxia increased RoR (0.444 +/- 0.069/s) from normoxia (0.311 +/- 0.054/s; +55%; P = 0.041). These findings indicated that hypoxia disrupts dynamic CA, but hypocapnia augments the dynamic CA response. Because hypocapnia is a consequence of hypoxic-induced chemoreflex activation, it may provide a teleological means to effectively maintain dynamic CA in the face of prevailing arterial hypoxemia.

摘要

缺氧已知会损害脑自动调节(CA)。先前的研究表明,CA 受到脑血管张力的深刻影响,而脑血管张力主要由动脉氧分压(O2)和二氧化碳分压(CO2)决定。然而,通过呼吸化学感受器激活引起的低氧诱导性过度通气导致低碳酸血症,这可能会独立于动脉氧分压影响 CA。为了确定 O2 对动态脑血流调节的影响,我们研究了在正常氧合、等碳酸血症高氧合、缺氧和随后的低碳酸血症缺氧对动态 CA 的影响。我们测量了心率、血压、通气参数和大脑中动脉血流速度(经颅多普勒)。在四个随机分配的呼吸干预期间(n = 9)测量动态 CA:1)正常氧合(21% O2);2)等碳酸血症高氧合(40% O2);3)等碳酸血症缺氧(14% O2);4)低碳酸血症缺氧(14% O2)。在每种情况下,在双侧大腿袖带诱导的短暂低血压期间,估计了作为动态 CA 的既定指标的脑调节率(RoR)。在等碳酸血症高氧合期间,RoR 没有改变。等碳酸血症缺氧降低了 RoR(0.202 +/- 0.003/s;27%;P = 0.043),表明动态 CA 受损。相比之下,低碳酸血症缺氧使 RoR 从正常氧合时增加(0.444 +/- 0.069/s;+55%;P = 0.041)。这些发现表明缺氧破坏了动态 CA,但低碳酸血症增强了动态 CA 反应。由于低碳酸血症是低氧诱导的化学感受器激活的结果,它可能提供了一种目的论的手段,以有效地维持在流行的动脉低氧血症的情况下的动态 CA。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验