Ageing and Stroke Medicine Group, Department of Cardiovascular Sciences, University of Leicester, UK.
J Appl Physiol (1985). 2010 Mar;108(3):604-13. doi: 10.1152/japplphysiol.01157.2009. Epub 2009 Dec 24.
Dynamic cerebral autoregulation (CA) is the transient response of cerebral blood flow (CBF) to rapid blood pressure changes: it improves in hypocapnia and becomes impaired during hypercapnia. Batch-processing techniques have mostly been used to measure CA, providing a single estimate for an entire recording. A new approach to increase the temporal resolution of dynamic CA parameters was applied to transient hypercapnia and hypocapnia to describe the time-varying properties of dynamic CA during these conditions. Thirty healthy subjects (mean +/- SD: 25 +/- 6 yr, 9 men) were recruited. CBF velocity was recorded in both middle cerebral arteries (MCAs) with transcranial Doppler ultrasound. Arterial blood pressure (Finapres), end-tidal CO(2) (ET(CO(2)); infrared capnograph), and a three-lead ECG were also measured at rest and during repeated breath hold and hyperventilation. A moving window autoregressive moving average model provided continuous values of the dynamic CA index [autoregulation index (ARI)] and unconstrained gain. Breath hold led to significant increase in ET(CO(2)) (+5.4 +/- 6.1 mmHg), with concomitant increase in CBF velocity in both MCAs. Continuous dynamic CA parameters showed highly significant changes (P < 0.001), with a temporal pattern reflecting a delayed dynamic response of CA to changes in arterial Pco(2) and a maximal reduction in ARI of -5.1 +/- 2.4 and -5.1 +/- 2.3 for the right and left MCA, respectively. Hyperventilation led to a marked decrease in ET(CO(2)) (-7.2 +/- 4.1 mmHg, P < 0.001). Unexpectedly, CA efficiency dropped significantly with the inception of the metronome-controlled hyperventilation, but, after approximately 30 s, the ARI increased gradually to show a maximum change of 5.7 +/- 2.9 and 5.3 +/- 3.0 for the right and left MCA, respectively (P < 0.001). These results confirm the potential of continuous estimates of dynamic CA to improve our understanding of human cerebrovascular physiology and represent a promising new approach to improve the sensitivity of clinical applications of dynamic CA modeling.
动态脑自动调节(CA)是指脑血流(CBF)对血压快速变化的瞬态反应:它在低碳酸血症时增强,在高碳酸血症时受损。批量处理技术主要用于测量 CA,为整个记录提供单一估计值。为了提高动态 CA 参数的时间分辨率,采用了一种新方法来增加瞬态高碳酸血症和低碳酸血症的时间分辨率,以描述在这些条件下动态 CA 的时变特性。 30 名健康受试者(平均 +/- SD:25 +/- 6 岁,9 名男性)被招募。使用经颅多普勒超声记录双侧大脑中动脉(MCA)的 CBF 速度。还在休息和反复呼吸暂停及过度通气期间测量动脉血压(Finapres)、呼气末 CO2(ETCO2;红外二氧化碳描记器)和三导联心电图。移动窗口自回归移动平均模型提供了动态 CA 指数[自动调节指数(ARI)]和无约束增益的连续值。呼吸暂停导致 ETCO2 显著增加(+5.4 +/- 6.1 mmHg),同时双侧 MCA 的 CBF 速度也增加。连续动态 CA 参数变化显著(P < 0.001),时间模式反映了 CA 对动脉 Pco2 变化的延迟动态反应,ARI 最大减少分别为-5.1 +/- 2.4 和-5.1 +/- 2.3,用于右侧和左侧 MCA。过度通气导致 ETCO2 显著降低(-7.2 +/- 4.1 mmHg,P < 0.001)。出乎意料的是,随着节拍器控制过度通气的开始,CA 效率显著下降,但约 30 秒后,ARI 逐渐增加,右侧和左侧 MCA 的最大变化分别为 5.7 +/- 2.9 和 5.3 +/- 3.0(P < 0.001)。这些结果证实了连续估计动态 CA 的潜力,可以提高我们对人类脑血管生理学的理解,并代表了一种改善动态 CA 建模临床应用灵敏度的有前途的新方法。