Suppr超能文献

动态脑自动调节在短暂性低碳酸血症和高碳酸血症期间的连续评估。

Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia.

机构信息

Ageing and Stroke Medicine Group, Department of Cardiovascular Sciences, University of Leicester, UK.

出版信息

J Appl Physiol (1985). 2010 Mar;108(3):604-13. doi: 10.1152/japplphysiol.01157.2009. Epub 2009 Dec 24.

Abstract

Dynamic cerebral autoregulation (CA) is the transient response of cerebral blood flow (CBF) to rapid blood pressure changes: it improves in hypocapnia and becomes impaired during hypercapnia. Batch-processing techniques have mostly been used to measure CA, providing a single estimate for an entire recording. A new approach to increase the temporal resolution of dynamic CA parameters was applied to transient hypercapnia and hypocapnia to describe the time-varying properties of dynamic CA during these conditions. Thirty healthy subjects (mean +/- SD: 25 +/- 6 yr, 9 men) were recruited. CBF velocity was recorded in both middle cerebral arteries (MCAs) with transcranial Doppler ultrasound. Arterial blood pressure (Finapres), end-tidal CO(2) (ET(CO(2)); infrared capnograph), and a three-lead ECG were also measured at rest and during repeated breath hold and hyperventilation. A moving window autoregressive moving average model provided continuous values of the dynamic CA index [autoregulation index (ARI)] and unconstrained gain. Breath hold led to significant increase in ET(CO(2)) (+5.4 +/- 6.1 mmHg), with concomitant increase in CBF velocity in both MCAs. Continuous dynamic CA parameters showed highly significant changes (P < 0.001), with a temporal pattern reflecting a delayed dynamic response of CA to changes in arterial Pco(2) and a maximal reduction in ARI of -5.1 +/- 2.4 and -5.1 +/- 2.3 for the right and left MCA, respectively. Hyperventilation led to a marked decrease in ET(CO(2)) (-7.2 +/- 4.1 mmHg, P < 0.001). Unexpectedly, CA efficiency dropped significantly with the inception of the metronome-controlled hyperventilation, but, after approximately 30 s, the ARI increased gradually to show a maximum change of 5.7 +/- 2.9 and 5.3 +/- 3.0 for the right and left MCA, respectively (P < 0.001). These results confirm the potential of continuous estimates of dynamic CA to improve our understanding of human cerebrovascular physiology and represent a promising new approach to improve the sensitivity of clinical applications of dynamic CA modeling.

摘要

动态脑自动调节(CA)是指脑血流(CBF)对血压快速变化的瞬态反应:它在低碳酸血症时增强,在高碳酸血症时受损。批量处理技术主要用于测量 CA,为整个记录提供单一估计值。为了提高动态 CA 参数的时间分辨率,采用了一种新方法来增加瞬态高碳酸血症和低碳酸血症的时间分辨率,以描述在这些条件下动态 CA 的时变特性。 30 名健康受试者(平均 +/- SD:25 +/- 6 岁,9 名男性)被招募。使用经颅多普勒超声记录双侧大脑中动脉(MCA)的 CBF 速度。还在休息和反复呼吸暂停及过度通气期间测量动脉血压(Finapres)、呼气末 CO2(ETCO2;红外二氧化碳描记器)和三导联心电图。移动窗口自回归移动平均模型提供了动态 CA 指数[自动调节指数(ARI)]和无约束增益的连续值。呼吸暂停导致 ETCO2 显著增加(+5.4 +/- 6.1 mmHg),同时双侧 MCA 的 CBF 速度也增加。连续动态 CA 参数变化显著(P < 0.001),时间模式反映了 CA 对动脉 Pco2 变化的延迟动态反应,ARI 最大减少分别为-5.1 +/- 2.4 和-5.1 +/- 2.3,用于右侧和左侧 MCA。过度通气导致 ETCO2 显著降低(-7.2 +/- 4.1 mmHg,P < 0.001)。出乎意料的是,随着节拍器控制过度通气的开始,CA 效率显著下降,但约 30 秒后,ARI 逐渐增加,右侧和左侧 MCA 的最大变化分别为 5.7 +/- 2.9 和 5.3 +/- 3.0(P < 0.001)。这些结果证实了连续估计动态 CA 的潜力,可以提高我们对人类脑血管生理学的理解,并代表了一种改善动态 CA 建模临床应用灵敏度的有前途的新方法。

相似文献

1
Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia.
J Appl Physiol (1985). 2010 Mar;108(3):604-13. doi: 10.1152/japplphysiol.01157.2009. Epub 2009 Dec 24.
2
Spontaneous fluctuations in cerebral blood flow regulation: contribution of PaCO2.
J Appl Physiol (1985). 2010 Dec;109(6):1860-8. doi: 10.1152/japplphysiol.00857.2010. Epub 2010 Sep 30.
3
Effects of ageing on cerebral haemodynamics assessed during respiratory manoeuvres.
Age Ageing. 2011 Mar;40(2):199-204. doi: 10.1093/ageing/afq170. Epub 2011 Jan 27.
4
Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI.
J Appl Physiol (1985). 2014 Nov 15;117(10):1084-9. doi: 10.1152/japplphysiol.00651.2014. Epub 2014 Sep 4.
5
The effect of oxygen on dynamic cerebral autoregulation: critical role of hypocapnia.
J Appl Physiol (1985). 2010 Mar;108(3):538-43. doi: 10.1152/japplphysiol.01235.2009. Epub 2010 Jan 7.
6
Aging blunts hyperventilation-induced hypocapnia and reduction in cerebral blood flow velocity during maximal exercise.
Age (Dordr). 2012 Jun;34(3):725-35. doi: 10.1007/s11357-011-9258-9. Epub 2011 May 11.
7
Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia.
J Appl Physiol (1985). 2014 Nov 15;117(10):1090-6. doi: 10.1152/japplphysiol.00285.2014. Epub 2014 Jul 10.
8
Dynamics of the cerebral autoregulatory response to paced hyperventilation assessed using subcomponent and time-varying analyses.
J Appl Physiol (1985). 2022 Aug 1;133(2):311-319. doi: 10.1152/japplphysiol.00100.2022. Epub 2022 Jun 23.
10
Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2.
Brain Res. 2008 Sep 16;1230:115-24. doi: 10.1016/j.brainres.2008.07.048. Epub 2008 Jul 22.

引用本文的文献

3
Circadian and Diurnal Regulation of Cerebral Blood Flow.
Circ Res. 2024 Mar 15;134(6):695-710. doi: 10.1161/CIRCRESAHA.123.323049. Epub 2024 Mar 14.
4
Depression of dynamic cerebral autoregulation during neural activation: The role of responders and non-responders.
J Cereb Blood Flow Metab. 2024 Jul;44(7):1231-1245. doi: 10.1177/0271678X241229908. Epub 2024 Feb 1.
5
The effect of hypercapnia on the directional sensitivity of dynamic cerebral autoregulation and the influence of age and sex.
J Cereb Blood Flow Metab. 2024 Feb;44(2):272-283. doi: 10.1177/0271678X231203475. Epub 2023 Sep 25.
6
Critical Closing Pressure and Cerebrovascular Resistance Responses to Intracranial Pressure Variations in Neurocritical Patients.
Neurocrit Care. 2023 Oct;39(2):399-410. doi: 10.1007/s12028-023-01691-8. Epub 2023 Mar 3.
7
Ten Good Reasons to Practice Neuroultrasound in Critical Care Setting.
Front Neurol. 2022 Jan 13;12:799421. doi: 10.3389/fneur.2021.799421. eCollection 2021.
8
Integrative physiological assessment of cerebral hemodynamics and metabolism in acute ischemic stroke.
J Cereb Blood Flow Metab. 2022 Mar;42(3):454-470. doi: 10.1177/0271678X211033732. Epub 2021 Jul 26.
9
Impact of Arterial Carbon Dioxide and Oxygen Content on Cerebral Autoregulation Monitoring Among Children Supported by ECMO.
Neurocrit Care. 2021 Oct;35(2):480-490. doi: 10.1007/s12028-021-01201-8. Epub 2021 Mar 9.
10
Effects of Resistance Exercise and Nutritional Supplementation on Dynamic Cerebral Autoregulation in Head-Down Bed Rest.
Front Physiol. 2019 Aug 27;10:1114. doi: 10.3389/fphys.2019.01114. eCollection 2019.

本文引用的文献

1
Transcranial Doppler for evaluation of cerebral autoregulation.
Clin Auton Res. 2009 Aug;19(4):197-211. doi: 10.1007/s10286-009-0011-8. Epub 2009 Apr 16.
2
Autoregulation in the posterior circulation is altered by the metabolic state of the visual cortex.
Stroke. 2009 Jun;40(6):2062-7. doi: 10.1161/STROKEAHA.108.545285. Epub 2009 Apr 9.
3
Rapid and local autoregulation of cerebrovascular blood flow: a deep-brain imaging study in the mouse.
J Physiol. 2009 Feb 15;587(Pt 4):745-52. doi: 10.1113/jphysiol.2008.163253. Epub 2008 Dec 15.
5
Unconstrained parameter estimation for assessment of dynamic cerebral autoregulation.
Physiol Meas. 2008 Oct;29(10):1179-93. doi: 10.1088/0967-3334/29/10/003. Epub 2008 Sep 18.
6
Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2.
Brain Res. 2008 Sep 16;1230:115-24. doi: 10.1016/j.brainres.2008.07.048. Epub 2008 Jul 22.
7
Continuous estimates of dynamic cerebral autoregulation: influence of non-invasive arterial blood pressure measurements.
Physiol Meas. 2008 Apr;29(4):497-513. doi: 10.1088/0967-3334/29/4/006. Epub 2008 Apr 9.
8
Multivariate system identification for cerebral autoregulation.
Ann Biomed Eng. 2008 Feb;36(2):308-20. doi: 10.1007/s10439-007-9412-9. Epub 2007 Dec 8.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验