Dept. Fisica Fundamental, Universidad Nacional de Educación a Distancia, Aptdo. 60141, E-28080 Madrid, Spain.
J Chem Phys. 2009 Dec 28;131(24):244117. doi: 10.1063/1.3274222.
By using the standard theory of coarse graining based on Zwanzig's projection operator, we derive the dynamic equations for discrete hydrodynamic variables. These hydrodynamic variables are defined in terms of the Delaunay triangulation. The resulting microscopically derived equations can be understood, a posteriori, as a discretization on an arbitrary irregular grid of the Navier-Stokes equations. The microscopic derivation provides a set of discrete equations that exactly conserves mass, momentum, and energy and the dissipative part of the dynamics produces strict entropy increase. In addition, the microscopic derivation provides a practical implementation of thermal fluctuations in a way that the fluctuation-dissipation theorem is satisfied exactly. This paper points toward a close connection between coarse-graining procedures from microscopic dynamics and discretization schemes for partial differential equations.
利用基于 Zwanzig 投影算符的标准粗粒化理论,我们推导出离散流体力学变量的动力学方程。这些流体力学变量是根据 Delaunay 三角剖分定义的。从微观上推导出的这些方程,可以理解为对纳维-斯托克斯方程的任意不规则网格的离散化。微观推导提供了一组离散方程,这些方程精确地守恒质量、动量和能量,并且动力学的耗散部分产生严格的熵增加。此外,微观推导以满足涨落耗散定理的方式为热涨落提供了一种实用的实现方式。本文指出了微观动力学的粗粒化过程与偏微分方程的离散化方案之间的密切联系。