Suppr超能文献

一种用于模拟不可压缩牛顿流体介质中近中性浮力纳米颗粒热运动的混合方法。

A hybrid approach for the simulation of a nearly neutrally buoyant nanoparticle thermal motion in an incompressible Newtonian fluid medium.

作者信息

Uma B, Radhakrishnan R, Eckmann D M, Ayyaswamy P S

机构信息

Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

J Heat Transfer. 2013 Jan 1;135(1):0110111-9. doi: 10.1115/1.4007668.

Abstract

A hybrid scheme based on Markovian fluctuating hydrodynamics of the fluid and a non-Markovian Langevin dynamics with the Ornstein-Uhlenbeck noise perturbing the translational and rotational equations of motion of a nanoparticle is employed to study the thermal motion of a nearly neutrally buoyant nanoparticle in an incompressible Newtonian fluid medium. A direct numerical simulation adopting an arbitrary Lagrangian-Eulerian based finite element method is employed in simulating the thermal motion of the particle suspended in the fluid contained in a cylindrical vessel. The instantaneous flow around the particle and the particle motion are fully resolved. The numerical results show that (a) the calculated temperature of the nearly neutrally buoyant Brownian particle in a quiescent fluid satisfies the equipartition theorem; (b) the translational and rotational decay of the velocity autocorrelation functions result in algebraic tails, over long time; (c) the translational and rotational mean square displacements of the particle obeys Stokes-Einstein and Stokes-Einstein-Debye relations, respectively; and (d) the parallel and perpendicular diffusivities of the particle closer to the wall are consistent with the analytical results, where available. The study has important implications for designing nanocarriers for targeted drug delivery.

摘要

采用一种基于流体的马尔可夫涨落流体动力学和非马尔可夫朗之万动力学的混合方案,其中奥恩斯坦 - 乌伦贝克噪声扰动纳米颗粒的平移和旋转运动方程,以研究几乎中性浮力的纳米颗粒在不可压缩牛顿流体介质中的热运动。采用基于任意拉格朗日 - 欧拉的有限元方法进行直接数值模拟,以模拟悬浮在圆柱形容器内流体中的颗粒的热运动。颗粒周围的瞬时流动和颗粒运动都得到了充分解析。数值结果表明:(a)在静止流体中计算得到的几乎中性浮力布朗颗粒的温度满足能量均分定理;(b)速度自相关函数的平移和旋转衰减在长时间内导致代数尾部;(c)颗粒的平移和旋转均方位移分别服从斯托克斯 - 爱因斯坦关系和斯托克斯 - 爱因斯坦 - 德拜关系;(d)靠近壁面的颗粒的平行和垂直扩散系数与现有的解析结果一致。该研究对于设计用于靶向药物递送的纳米载体具有重要意义。

相似文献

2
Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle Brownian Motion in a Newtonian Fluid.
Int J Micronano Scale Transp. 2012 Jun 1;3(1-2):13-20. doi: 10.1260/1759-3093.3.1-2.13.
4
MODELING OF A NANOPARTICLE MOTION IN A NEWTONIAN FLUID: A COMPARISON BETWEEN FLUCTUATING HYDRODYNAMICS AND GENERALIZED LANGEVIN PROCEDURES.
Proc ASME Micro Nanoscale Heat Mass Transf Int Conf (2012). 2012 Mar;2012:735-743. doi: 10.1115/MNHMT2012-75019.
5
Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields.
Phys Fluids (1994). 2011 Jul;23(7):73602-7360215. doi: 10.1063/1.3611026. Epub 2011 Jul 26.
7
Nanocarrier-Cell Surface Adhesive and Hydrodynamic Interactions: Ligand-Receptor Bond Sensitivity Study.
J Nanotechnol Eng Med. 2012 Aug;3(3):310101-310108. doi: 10.1115/1.4007522. Epub 2013 Jan 18.
8
Motion of a nano-spheroid in a cylindrical vessel flow: Brownian and hydrodynamic interactions.
J Fluid Mech. 2017 Jun 25;821:117-152. doi: 10.1017/jfm.2017.182. Epub 2017 May 18.
9
Nanoparticle stochastic motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall.
Phys Rev Fluids. 2016;1. doi: 10.1103/PhysRevFluids.1.054104. Epub 2016 Sep 28.
10
Computational fluid dynamic simulation of two-fluid non-Newtonian nanohemodynamics through a diseased artery with a stenosis and aneurysm.
Comput Methods Biomech Biomed Engin. 2020 Jun;23(8):345-371. doi: 10.1080/10255842.2020.1729755. Epub 2020 Feb 26.

引用本文的文献

1
Computational Models for Nanoscale Fluid Dynamics and Transport Inspired by Nonequilibrium Thermodynamics.
J Heat Transfer. 2017 Mar;139(3):0330011-330019. doi: 10.1115/1.4035006. Epub 2016 Nov 22.
2
Nanocarrier Hydrodynamics and Binding in Targeted Drug Delivery: Challenges in Numerical Modeling and Experimental Validation.
J Nanotechnol Eng Med. 2013 Feb;4(1):101011-1010115. doi: 10.1115/1.4024004. Epub 2013 Jul 11.
3
Nanocarrier-Cell Surface Adhesive and Hydrodynamic Interactions: Ligand-Receptor Bond Sensitivity Study.
J Nanotechnol Eng Med. 2012 Aug;3(3):310101-310108. doi: 10.1115/1.4007522. Epub 2013 Jan 18.

本文引用的文献

3
Dynamic factors controlling targeting nanocarriers to vascular endothelium.
Curr Drug Metab. 2012 Jan;13(1):70-81. doi: 10.2174/138920012798356916.
4
Multiscale Modeling of Functionalized Nanocarriers in Targeted Drug Delivery.
Curr Nanosci. 2011 Oct 1;7(5):727-735. doi: 10.2174/157341311797483826.
6
Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields.
Phys Fluids (1994). 2011 Jul;23(7):73602-7360215. doi: 10.1063/1.3611026. Epub 2011 Jul 26.
7
Multivalent binding of nanocarrier to endothelial cells under shear flow.
Biophys J. 2011 Jul 20;101(2):319-26. doi: 10.1016/j.bpj.2011.05.063.
8
Dynamic factors controlling carrier anchoring on vascular cells.
IUBMB Life. 2011 Aug;63(8):640-7. doi: 10.1002/iub.475. Epub 2011 Jun 30.
9
Computational model for nanocarrier binding to endothelium validated using in vivo, in vitro, and atomic force microscopy experiments.
Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16530-5. doi: 10.1073/pnas.1006611107. Epub 2010 Sep 7.
10
Microscopic derivation of discrete hydrodynamics.
J Chem Phys. 2009 Dec 28;131(24):244117. doi: 10.1063/1.3274222.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验