Suppr超能文献

体内荧光成像与多变量曲线解析光谱解混技术。

In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique.

机构信息

Caliper Life Sciences, Inc., 2061 Challenger Drive, Alameda, California 94501, USA.

出版信息

J Biomed Opt. 2009 Nov-Dec;14(6):064011. doi: 10.1117/1.3258838.

Abstract

Spectral unmixing is a useful technique in fluorescence imaging for reducing the effects of native tissue autofluorescence and separating multiple fluorescence probes. While spectral unmixing methods are well established in fluorescence microscopy, they typically rely on precharacterized in-vitro spectra for each fluorophore. However, there are unique challenges for in-vivo applications, since the tissue absorption and scattering can have a significant impact on the measured spectrum of the fluorophore, and therefore make the in-vivo spectra substantially different to that of in vitro. In this work, we introduce a spectral unmixing algorithm tailored for in-vivo optical imaging that does not rely on precharacterized spectral libraries. It is derived from a multivariate curve resolution (MCR) method, which has been widely used in studies of chemometrics and gene expression. Given multispectral images and a few straightforward constraints such as non-negativity, the algorithm automatically finds the signal distribution and the pure spectrum of each component. Signal distribution maps help separate autofluorescence from other probes in the raw images and hence provide better quantification and localization for each probe. The algorithm is demonstrated with an extensive set of in-vivo experiments using near-infrared dyes and quantum dots in both epi-illumination and transillumination geometries.

摘要

光谱解混是荧光成像中一种有用的技术,可以减少天然组织自发荧光的影响,并分离多个荧光探针。虽然光谱解混方法在荧光显微镜中已经得到很好的建立,但它们通常依赖于每个荧光团的预特征化的体外光谱。然而,对于体内应用存在独特的挑战,因为组织的吸收和散射会对荧光团的测量光谱产生重大影响,因此使体内光谱与体外光谱有很大的不同。在这项工作中,我们引入了一种针对体内光学成像的光谱解混算法,该算法不依赖于预先确定的光谱库。它是从多元曲线分辨(MCR)方法中衍生出来的,该方法已广泛应用于化学计量学和基因表达的研究中。给定多光谱图像和一些简单的约束条件,如非负性,该算法自动找到信号分布和每个组件的纯光谱。信号分布图有助于从原始图像中的其他探针中分离出自发荧光,从而为每个探针提供更好的定量和定位。该算法通过使用近红外染料和量子点在 epi-illumination 和 transillumination 两种几何结构中的大量体内实验进行了演示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验