Molecular and Integrative Physiological Sciences, Dept. of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
Comput Biol Chem. 2010 Feb;34(1):19-33. doi: 10.1016/j.compbiolchem.2009.11.002. Epub 2009 Dec 6.
The estimation of chemical kinetic rate constants for any non-trivial model is complex due to the nonlinear effects of second order chemical reactions. We developed an algorithm to accomplish this goal based on the Damped Least Squares (DLS) inversion method and then tested the effectiveness of this method on the McKillop-Geeves (MG) model of thin filament regulation. The kinetics of MG model is defined by a set of nonlinear ordinary differential equations (ODEs) that predict the evolution of troponin-tropomyosin-actin and actin-myosin states. The values of the rate constants are estimated by integrating these ODEs numerically and fitting them to a series of stopped-flow pyrene fluorescence transients of myosin-S1 fragment binding to regulated actin in solution. The accuracy and robustness of the estimated rate constants are evaluated for DLS and two other methods, namely quasi-Newton (QN) and simulated annealing (SA). The comparison of these methods revealed that SA provides the best estimates of the model parameters because of its global optimization scheme. However it converges slowly and does quantify the uniqueness of the estimated parameters. On the other hand the QN method converges rapidly but only if the initial guess of the parameters is close to the optimum values, otherwise it diverges. Overall, the DLS method proves to be the most convenient method. It converges fast and was able to provide excellent estimates of kinetic parameters. Furthermore, DLS provides the model resolution matrix, which quantifies the interdependence of model parameters thereby evaluating the uniqueness of their estimated values. This property is essential for estimating of the dependence of the model parameters on experimental conditions (e.g. Ca(2+) concentration) when it is assessed from noisy experimental data such as pyrene fluorescence from stopped-flow transients. The advantages of the DLS method observed in this study should be further examined in other physicochemical systems to firmly establish the observed effectiveness of DSL vs. the other parameter estimation methods.
由于二阶化学反应的非线性效应,任何非平凡模型的化学动力学速率常数的估计都很复杂。我们开发了一种基于阻尼最小二乘法(DLS)反演方法的算法来实现这一目标,然后在 McKillop-Geeves(MG)模型的细丝调节上测试了这种方法的有效性。MG 模型的动力学由一组非线性常微分方程(ODE)定义,这些方程预测肌钙蛋白-原肌球蛋白-肌动蛋白和肌动蛋白-肌球蛋白状态的演变。通过数值积分这些 ODE 并将其拟合到一系列停流荧光瞬变曲线来估计速率常数,这些曲线显示了肌球蛋白 S1 片段在溶液中与调节肌动蛋白结合的情况。通过比较 DLS 和另外两种方法,即拟牛顿法(QN)和模拟退火法(SA),评估了估计的速率常数的准确性和稳健性。这些方法的比较表明,由于其全局优化方案,SA 提供了模型参数的最佳估计。然而,它的收敛速度较慢,无法量化估计参数的唯一性。另一方面,QN 方法收敛速度较快,但只有当参数的初始值接近最佳值时才收敛,否则它会发散。总的来说,DLS 方法是最方便的方法。它收敛速度快,能够提供动力学参数的优异估计。此外,DLS 提供了模型分辨率矩阵,量化了模型参数的相互依赖性,从而评估了估计值的唯一性。在从停流瞬变等噪声实验数据评估模型参数对实验条件(例如 Ca(2+)浓度)的依赖性时,这一特性对于估计模型参数的依赖性非常重要。在这项研究中观察到的 DLS 方法的优点应在其他物理化学系统中进一步研究,以确定 DLS 相对于其他参数估计方法的有效性。