Suppr超能文献

肌球蛋白亚片段-1与调节型肌动蛋白结合模型的理论动力学研究:希尔模型与吉夫斯模型。

Theoretical kinetic studies of models for binding myosin subfragment-1 to regulated actin: Hill model versus Geeves model.

作者信息

Chen Y, Yan B, Chalovich J M, Brenner B

机构信息

Mathematical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9190 Rockville Pike, Bethesda, Maryland 20892-2690, USA.

出版信息

Biophys J. 2001 May;80(5):2338-49. doi: 10.1016/s0006-3495(01)76204-2.

Abstract

It was previously shown that a one-dimensional Ising model could successfully simulate the equilibrium binding of myosin S1 to regulated actin filaments (T. L. Hill, E. Eisenberg and L. Greene, Proc. Natl. Acad. Sci. U.S.A. 77:3186-3190, 1980). However, the time course of myosin S1 binding to regulated actin was thought to be incompatible with this model, and a three-state model was subsequently developed (D. F. McKillop and M. A. Geeves, Biophys. J. 65:693-701, 1993). A quantitative analysis of the predicted time course of myosin S1 binding to regulated actin, however, was never done for either model. Here we present the procedure for the theoretical evaluation of the time course of myosin S1 binding for both models and then show that 1) the Hill model can predict the "lag" in the binding of myosin S1 to regulated actin that is observed in the absence of Ca++ when S1 is in excess of actin, and 2) both models generate very similar families of binding curves when [S1]/[actin] is varied. This result shows that, just based on the equilibrium and pre-steady-state kinetic binding data alone, it is not possible to differentiate between the two models. Thus, the model of Hill et al. cannot be ruled out on the basis of existing pre-steady-state and equilibrium binding data. Physical mechanisms underlying the generation of the lag in the Hill model are discussed.

摘要

先前的研究表明,一维伊辛模型能够成功模拟肌球蛋白S1与调节型肌动蛋白丝的平衡结合(T. L. 希尔、E. 艾森伯格和L. 格林,《美国国家科学院院刊》77:3186 - 3190, 1980)。然而,肌球蛋白S1与调节型肌动蛋白结合的时间进程被认为与该模型不相符,随后便开发了一个三态模型(D. F. 麦基洛普和M. A. 吉夫斯,《生物物理学杂志》65:693 - 701, 1993)。然而,对于这两种模型,从未对肌球蛋白S1与调节型肌动蛋白结合的预测时间进程进行过定量分析。在此,我们给出了对两种模型中肌球蛋白S1结合时间进程进行理论评估的程序,然后表明:1)当S1过量于肌动蛋白时,在没有Ca++的情况下观察到的肌球蛋白S1与调节型肌动蛋白结合的“延迟”,希尔模型能够预测;2)当[S1]/[肌动蛋白]变化时,两种模型产生的结合曲线族非常相似。这一结果表明,仅基于平衡态和稳态前动力学结合数据,无法区分这两种模型。因此,不能根据现有的稳态前和平衡结合数据排除希尔等人的模型。文中还讨论了希尔模型中延迟产生的物理机制。

相似文献

2
The Hill model for binding myosin S1 to regulated actin is not equivalent to the McKillop-Geeves model.
J Mol Biol. 2012 Mar 16;417(1-2):112-28. doi: 10.1016/j.jmb.2012.01.011. Epub 2012 Jan 28.
3
Cooperativity and switching within the three-state model of muscle regulation.
Biochemistry. 1999 Jan 19;38(3):1102-10. doi: 10.1021/bi981603e.
5
Kinetics of association of myosin subfragment-1 to unlabeled and pyrenyl-labeled actin.
J Biol Chem. 1996 May 24;271(21):12380-6. doi: 10.1074/jbc.271.21.12380.
6
Transient kinetics of the interaction of actin with myosin subfragment-1 in the absence of nucleotide.
Biophys J. 1993 Oct;65(4):1433-44. doi: 10.1016/S0006-3495(93)81209-8.
9
Fluorescence probe studies of the state of tropomyosin in reconstituted muscle thin filaments.
Biochemistry. 1987 Aug 11;26(16):4922-5. doi: 10.1021/bi00390a005.
10
The role of three-state docking of myosin S1 with actin in force generation.
Biophys J. 1995 Apr;68(4 Suppl):194S-199S; discussion 199S-201S.

引用本文的文献

1
Negative Charges Introduced Near the IT Helix of Cardiac Troponin T Stabilize the Active State of Actin Filaments.
Biochemistry. 2023 Jul 18;62(14):2137-2146. doi: 10.1021/acs.biochem.3c00279. Epub 2023 Jun 28.
2
Does the Actin Network Architecture Leverage Myosin-I Functions?
Biology (Basel). 2022 Jun 29;11(7):989. doi: 10.3390/biology11070989.
3
The mechanism of thin filament regulation: Models in conflict?
J Gen Physiol. 2019 Nov 4;151(11):1265-1271. doi: 10.1085/jgp.201912446. Epub 2019 Sep 30.
4
Stepwise C-Terminal Truncation of Cardiac Troponin T Alters Function at Low and Saturating Ca.
Biophys J. 2018 Aug 21;115(4):702-712. doi: 10.1016/j.bpj.2018.06.028. Epub 2018 Jul 12.
5
Troponin C Mutations Partially Stabilize the Active State of Regulated Actin and Fully Stabilize the Active State When Paired with Δ14 TnT.
Biochemistry. 2017 Jun 13;56(23):2928-2937. doi: 10.1021/acs.biochem.6b01092. Epub 2017 May 31.
6
Cooperative regulation of myosin-S1 binding to actin filaments by a continuous flexible Tm-Tn chain.
Eur Biophys J. 2012 Dec;41(12):1015-32. doi: 10.1007/s00249-012-0859-8. Epub 2012 Oct 7.
7
Disease causing mutations of troponin alter regulated actin state distributions.
J Muscle Res Cell Motil. 2012 Dec;33(6):493-9. doi: 10.1007/s10974-012-9305-x. Epub 2012 Jun 8.
8
The Hill model for binding myosin S1 to regulated actin is not equivalent to the McKillop-Geeves model.
J Mol Biol. 2012 Mar 16;417(1-2):112-28. doi: 10.1016/j.jmb.2012.01.011. Epub 2012 Jan 28.
9
Kinetics of regulated actin transitions measured by probes on tropomyosin.
Biophys J. 2010 Jun 2;98(11):2601-9. doi: 10.1016/j.bpj.2010.02.030.
10
Resolution and uniqueness of estimated parameters of a model of thin filament regulation in solution.
Comput Biol Chem. 2010 Feb;34(1):19-33. doi: 10.1016/j.compbiolchem.2009.11.002. Epub 2009 Dec 6.

本文引用的文献

1
A new model of cooperative myosin-thin filament binding.
J Biol Chem. 2000 Sep 8;275(36):27587-93. doi: 10.1074/jbc.M003648200.
4
Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy.
Biophys J. 1999 Aug;77(2):985-92. doi: 10.1016/S0006-3495(99)76949-3.
5
Steric-model for activation of muscle thin filaments.
J Mol Biol. 1997 Feb 14;266(1):8-14. doi: 10.1006/jmbi.1996.0800.
8
A cellular automaton model for the regulatory behavior of muscle thin filaments.
Biophys J. 1994 Jul;67(1):11-28. doi: 10.1016/S0006-3495(94)80475-8.
9
Kinetics of binding of caldesmon to actin.
J Biol Chem. 1995 Apr 28;270(17):9911-6. doi: 10.1074/jbc.270.17.9911.
10
Kinetic studies of the cooperative binding of subfragment 1 to regulated actin.
Proc Natl Acad Sci U S A. 1980 Dec;77(12):7209-13. doi: 10.1073/pnas.77.12.7209.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验