Pohang Accelerator Laboratory, Pohang University of Science and Technology, San31, Hyoja-Dong, Nam-Gu, Pohang, Kyungbuk 790-784, Republic of Korea.
Biochem Biophys Res Commun. 2010 Jan 29;392(1):106-11. doi: 10.1016/j.bbrc.2010.01.014. Epub 2010 Jan 7.
SSADH is involved in the final step of GABA degradation, converting SSA to succinic acid in the human mitochondrial matrix, and its activity is known to be regulated via 'redox-switch modulation' of the catalytic loop. We present the crystal structure of EcSSADH, revealing that the catalytic loop of EcSSADH, unlike that of human SSADH, does not undergo disulfide bond-mediated structural changes upon changes of environmental redox status. Subsequent redox change experiments using recombinant proteins confirm the non-redox regulation of this protein. Detailed structural analysis shows that a difference in the conformation of the connecting loop (beta15-beta16) causes the formation of a water molecule-mediated hydrogen bond network between the connecting loop and the catalytic loop in EcSSADH, making the catalytic loop of EcSSADH more rigid compared to that of human SSADH. The cytosolic localization of EcSSADH and the cellular function of the GABA shunt in E. coli might result in the non-redox mediated regulatory mechanisms of the protein.
SSADH 参与 GABA 降解的最后一步,在人线粒体基质中将 SSA 转化为琥珀酸,其活性已知通过催化环的“氧化还原开关调节”来调节。我们呈现了 EcSSADH 的晶体结构,揭示了 EcSSADH 的催化环与人类 SSADH 的催化环不同,在环境氧化还原状态变化时不会发生二硫键介导的结构变化。使用重组蛋白进行的后续氧化还原变化实验证实了该蛋白的非氧化还原调节。详细的结构分析表明,连接环(β15-β16)构象的差异导致连接环和 EcSSADH 催化环之间形成水分子介导的氢键网络,使 EcSSADH 的催化环比人类 SSADH 的催化环更具刚性。EcSSADH 的细胞质定位和大肠杆菌 GABA 分流的细胞功能可能导致该蛋白的非氧化还原介导的调节机制。