Suppr超能文献

结核分枝杆菌琥珀酸半醛脱氢酶(GabD1)的化学机制研究。

On the chemical mechanism of succinic semialdehyde dehydrogenase (GabD1) from Mycobacterium tuberculosis.

机构信息

Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Ave. New York, NY 10065, USA.

出版信息

Arch Biochem Biophys. 2011 May 1;509(1):90-9. doi: 10.1016/j.abb.2011.01.023. Epub 2011 Feb 12.

Abstract

Succinic semialdehyde dehydrogenases (SSADHs) are ubiquitous enzymes that catalyze the NAD(P)+-coupled oxidation of succinic semialdehyde (SSA) to succinate, the last step of the γ-aminobutyrate shunt. Mycobacterium tuberculosis encodes two paralogous SSADHs (gabD1 and gabD2). Here, we describe the first mechanistic characterization of GabD1, using steady-state kinetics, pH-rate profiles, ¹H NMR, and kinetic isotope effects. Our results confirmed SSA and NADP+ as substrates and demonstrated that a divalent metal, such as Mg²+, linearizes the time course. pH-rate studies failed to identify any ionizable groups with pK(a) between 5.5 and 10 involved in substrate binding or rate-limiting chemistry. Primary deuterium, solvent and multiple kinetic isotope effects revealed that nucleophilic addition to SSA is very fast, followed by a modestly rate-limiting hydride transfer and fast thioester hydrolysis. Proton inventory studies revealed that a single proton is associated with the solvent-sensitive rate-limiting step. Together, these results suggest that product dissociation and/or conformational changes linked to it are rate-limiting. Using structural information for the human homolog enzyme and ¹H NMR, we further established that nucleophilic attack takes place at the Si face of SSA, generating a thiohemiacetal with S stereochemistry. Deuteride transfer to the Pro-R position in NADP+ generates the thioester intermediate and [4A-²H, 4B-¹H] NADPH. A chemical mechanism based on these data and the structural information available is proposed.

摘要

琥珀酸半醛脱氢酶(SSADHs)是一种普遍存在的酶,能够催化琥珀酸半醛(SSA)与 NAD(P)+的偶联氧化,生成琥珀酸,这是γ-氨基丁酸支路的最后一步。结核分枝杆菌编码两个平行的 SSADHs(gabD1 和 gabD2)。在这里,我们使用稳态动力学、pH 速率曲线、¹H NMR 和动力学同位素效应,首次对 GabD1 进行了机制描述。我们的结果证实了 SSA 和 NADP+是底物,并表明二价金属,如 Mg²+,可以使时间进程线性化。pH 速率研究未能确定任何 pK(a)在 5.5 到 10 之间的可离子化基团参与底物结合或限速化学。初级氘代、溶剂和多个动力学同位素效应表明,SSA 的亲核加成非常快,随后是适度限速的氢化物转移和快速硫酯水解。质子库存研究表明,只有一个质子与溶剂敏感的限速步骤相关。综上所述,这些结果表明,产物的解离和/或与之相关的构象变化是限速的。利用人类同源酶的结构信息和 ¹H NMR,我们进一步确定亲核攻击发生在 SSA 的 Si 面,生成具有 S 立体化学的硫代半缩醛。氘转移到 NADP+的 Pro-R 位置,生成硫酯中间产物和[4A-²H, 4B-¹H]NADPH。根据这些数据和现有结构信息提出了一个化学机制。

相似文献

1
On the chemical mechanism of succinic semialdehyde dehydrogenase (GabD1) from Mycobacterium tuberculosis.
Arch Biochem Biophys. 2011 May 1;509(1):90-9. doi: 10.1016/j.abb.2011.01.023. Epub 2011 Feb 12.
4
Structural insight into the substrate inhibition mechanism of NADP(+)-dependent succinic semialdehyde dehydrogenase from Streptococcus pyogenes.
Biochem Biophys Res Commun. 2015 Jun 5;461(3):487-93. doi: 10.1016/j.bbrc.2015.04.047. Epub 2015 Apr 16.
5
Kinetic characterization and structural modeling of an NADP-dependent succinic semialdehyde dehydrogenase from Anabaena sp. PCC7120.
Int J Biol Macromol. 2018 Mar;108:615-624. doi: 10.1016/j.ijbiomac.2017.12.059. Epub 2017 Dec 11.
6
Kinetic and structural insights into enzymatic mechanism of succinic semialdehyde dehydrogenase from Cyanothece sp. ATCC51142.
PLoS One. 2020 Sep 23;15(9):e0239372. doi: 10.1371/journal.pone.0239372. eCollection 2020.
7
Kinetic and structural characterization for cofactor preference of succinic semialdehyde dehydrogenase from Streptococcus pyogenes.
Mol Cells. 2014 Oct 31;37(10):719-26. doi: 10.14348/molcells.2014.0162. Epub 2014 Sep 26.
9
Structural basis for a cofactor-dependent oxidation protection and catalysis of cyanobacterial succinic semialdehyde dehydrogenase.
J Biol Chem. 2013 May 31;288(22):15760-70. doi: 10.1074/jbc.M113.460428. Epub 2013 Apr 15.
10
Saturation transfer difference NMR studies on substrates and inhibitors of succinic semialdehyde dehydrogenases.
Biochem Biophys Res Commun. 2008 Aug 1;372(3):400-6. doi: 10.1016/j.bbrc.2008.04.183. Epub 2008 May 12.

引用本文的文献

1
The aldehyde dehydrogenase superfamilies: correlations and deviations in structure and function.
Appl Microbiol Biotechnol. 2025 Apr 29;109(1):106. doi: 10.1007/s00253-025-13467-5.
3
Probiogenomic analysis of SPS109: A potential GABA-producing and cholesterol-lowering probiotic strain.
Heliyon. 2024 Jun 27;10(13):e33823. doi: 10.1016/j.heliyon.2024.e33823. eCollection 2024 Jul 15.
4
Kinetic and structural insights into enzymatic mechanism of succinic semialdehyde dehydrogenase from Cyanothece sp. ATCC51142.
PLoS One. 2020 Sep 23;15(9):e0239372. doi: 10.1371/journal.pone.0239372. eCollection 2020.
5
Metabolic plasticity of central carbon metabolism protects mycobacteria.
Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13135-6. doi: 10.1073/pnas.1518171112. Epub 2015 Oct 19.
6
E1 of α-ketoglutarate dehydrogenase defends Mycobacterium tuberculosis against glutamate anaplerosis and nitroxidative stress.
Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):E5834-43. doi: 10.1073/pnas.1510932112. Epub 2015 Oct 1.
7
Kinetic and structural characterization for cofactor preference of succinic semialdehyde dehydrogenase from Streptococcus pyogenes.
Mol Cells. 2014 Oct 31;37(10):719-26. doi: 10.14348/molcells.2014.0162. Epub 2014 Sep 26.
8
Structural basis for a cofactor-dependent oxidation protection and catalysis of cyanobacterial succinic semialdehyde dehydrogenase.
J Biol Chem. 2013 May 31;288(22):15760-70. doi: 10.1074/jbc.M113.460428. Epub 2013 Apr 15.
9
Structural, kinetic and chemical mechanism of isocitrate dehydrogenase-1 from Mycobacterium tuberculosis.
Biochemistry. 2013 Mar 12;52(10):1765-75. doi: 10.1021/bi400037w. Epub 2013 Feb 27.
10
Functional γ-Aminobutyrate Shunt in Listeria monocytogenes: role in acid tolerance and succinate biosynthesis.
Appl Environ Microbiol. 2013 Jan;79(1):74-80. doi: 10.1128/AEM.02184-12. Epub 2012 Oct 12.

本文引用的文献

2
Crystal structure of non-redox regulated SSADH from Escherichia coli.
Biochem Biophys Res Commun. 2010 Jan 29;392(1):106-11. doi: 10.1016/j.bbrc.2010.01.014. Epub 2010 Jan 7.
3
Redox-switch modulation of human SSADH by dynamic catalytic loop.
EMBO J. 2009 Apr 8;28(7):959-68. doi: 10.1038/emboj.2009.40. Epub 2009 Mar 19.
4
Saturation transfer difference NMR studies on substrates and inhibitors of succinic semialdehyde dehydrogenases.
Biochem Biophys Res Commun. 2008 Aug 1;372(3):400-6. doi: 10.1016/j.bbrc.2008.04.183. Epub 2008 May 12.
7
Kinetic and chemical mechanism of alpha-isopropylmalate synthase from Mycobacterium tuberculosis.
Biochemistry. 2006 Jul 25;45(29):8988-99. doi: 10.1021/bi0606602.
8
Glutamate- and GABA-based CNS therapeutics.
Curr Opin Pharmacol. 2006 Feb;6(1):7-17. doi: 10.1016/j.coph.2005.11.005. Epub 2005 Dec 22.
9
Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of alpha-ketoglutarate decarboxylase.
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10670-5. doi: 10.1073/pnas.0501605102. Epub 2005 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验