Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Ave. New York, NY 10065, USA.
Arch Biochem Biophys. 2011 May 1;509(1):90-9. doi: 10.1016/j.abb.2011.01.023. Epub 2011 Feb 12.
Succinic semialdehyde dehydrogenases (SSADHs) are ubiquitous enzymes that catalyze the NAD(P)+-coupled oxidation of succinic semialdehyde (SSA) to succinate, the last step of the γ-aminobutyrate shunt. Mycobacterium tuberculosis encodes two paralogous SSADHs (gabD1 and gabD2). Here, we describe the first mechanistic characterization of GabD1, using steady-state kinetics, pH-rate profiles, ¹H NMR, and kinetic isotope effects. Our results confirmed SSA and NADP+ as substrates and demonstrated that a divalent metal, such as Mg²+, linearizes the time course. pH-rate studies failed to identify any ionizable groups with pK(a) between 5.5 and 10 involved in substrate binding or rate-limiting chemistry. Primary deuterium, solvent and multiple kinetic isotope effects revealed that nucleophilic addition to SSA is very fast, followed by a modestly rate-limiting hydride transfer and fast thioester hydrolysis. Proton inventory studies revealed that a single proton is associated with the solvent-sensitive rate-limiting step. Together, these results suggest that product dissociation and/or conformational changes linked to it are rate-limiting. Using structural information for the human homolog enzyme and ¹H NMR, we further established that nucleophilic attack takes place at the Si face of SSA, generating a thiohemiacetal with S stereochemistry. Deuteride transfer to the Pro-R position in NADP+ generates the thioester intermediate and [4A-²H, 4B-¹H] NADPH. A chemical mechanism based on these data and the structural information available is proposed.
琥珀酸半醛脱氢酶(SSADHs)是一种普遍存在的酶,能够催化琥珀酸半醛(SSA)与 NAD(P)+的偶联氧化,生成琥珀酸,这是γ-氨基丁酸支路的最后一步。结核分枝杆菌编码两个平行的 SSADHs(gabD1 和 gabD2)。在这里,我们使用稳态动力学、pH 速率曲线、¹H NMR 和动力学同位素效应,首次对 GabD1 进行了机制描述。我们的结果证实了 SSA 和 NADP+是底物,并表明二价金属,如 Mg²+,可以使时间进程线性化。pH 速率研究未能确定任何 pK(a)在 5.5 到 10 之间的可离子化基团参与底物结合或限速化学。初级氘代、溶剂和多个动力学同位素效应表明,SSA 的亲核加成非常快,随后是适度限速的氢化物转移和快速硫酯水解。质子库存研究表明,只有一个质子与溶剂敏感的限速步骤相关。综上所述,这些结果表明,产物的解离和/或与之相关的构象变化是限速的。利用人类同源酶的结构信息和 ¹H NMR,我们进一步确定亲核攻击发生在 SSA 的 Si 面,生成具有 S 立体化学的硫代半缩醛。氘转移到 NADP+的 Pro-R 位置,生成硫酯中间产物和[4A-²H, 4B-¹H]NADPH。根据这些数据和现有结构信息提出了一个化学机制。