Goldsmith-Fischman Sharon, Kuzin Alexandre, Edstrom William C, Benach Jordi, Shastry Ritu, Xiao Rong, Acton Thomas B, Honig Barry, Montelione Gaetano T, Hunt John F
Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
J Mol Biol. 2004 Nov 19;344(2):549-65. doi: 10.1016/j.jmb.2004.08.074.
The isc and suf operons in Escherichia coli represent alternative genetic systems optimized to mediate the essential metabolic process of iron-sulfur cluster (Fe-S) assembly under basal or oxidative-stress conditions, respectively. Some of the proteins in these two operons share strong sequence homology, e.g. the cysteine desulfurases IscS and SufS, and presumably play the same role in the oxygen-sensitive assembly process. However, other proteins in these operons share no significant homology and occur in a mutually exclusive manner in Fe-S assembly operons in other organisms (e.g. IscU and SufE). These latter proteins presumably play distinct roles adapted to the different assembly mechanisms used by the two systems. IscU has three invariant cysteine residues that function as a template for Fe-S assembly while accepting a sulfur atom from IscS. SufE, in contrast, does not function as an Fe-S assembly template but has been suggested to function as a shuttle protein that uses a persulfide linkage to a single invariant cysteine residue to transfer a sulfur atom from SufS to an alternative Fe-S assembly template. Here, we present and analyze the 2.0A crystal structure of E.coli SufE. The structure shows that the persulfide-forming cysteine occurs at the tip of a loop with elevated B-factors, where its side-chain is buried from solvent exposure in a hydrophobic cavity located beneath a highly conserved surface. Despite the lack of sequence homology, the core of SufE shows strong structural similarity to IscU, and the sulfur-acceptor site in SufE coincides with the location of the cysteine residues mediating Fe-S cluster assembly in IscU. Thus, a conserved core structure is implicated in mediating the interactions of both SufE and IscU with the mutually homologous cysteine desulfurase enzymes present in their respective operons. A similar core structure is observed in a domain found in a variety of Fe-S cluster containing flavoenzymes including xanthine dehydrogenase, where it also mediates interdomain interactions. Therefore, the core fold of SufE/IscU has been adapted to mediate interdomain interactions in diverse redox protein systems in the course of evolution.
大肠杆菌中的isc和suf操纵子分别代表了两种不同的遗传系统,它们经过优化,能在基础条件或氧化应激条件下介导铁硫簇(Fe-S)组装这一关键代谢过程。这两个操纵子中的一些蛋白质具有很强的序列同源性,例如半胱氨酸脱硫酶IscS和SufS,它们可能在对氧敏感的组装过程中发挥相同作用。然而,这些操纵子中的其他蛋白质没有显著的同源性,并且在其他生物体的Fe-S组装操纵子中以互斥的方式出现(例如IscU和SufE)。这些蛋白质可能发挥着与两个系统所采用的不同组装机制相适应的独特作用。IscU有三个不变的半胱氨酸残基,在从IscS接受一个硫原子时,作为Fe-S组装的模板。相比之下,SufE并不作为Fe-S组装模板发挥作用,但有人认为它作为一种穿梭蛋白,利用与单个不变半胱氨酸残基的过硫化物连接,将一个硫原子从SufS转移到另一种Fe-S组装模板上。在此,我们展示并分析了大肠杆菌SufE的2.0埃晶体结构。该结构显示,形成过硫化物的半胱氨酸位于一个B因子升高的环的末端,其侧链埋藏于溶剂暴露之外,处于一个位于高度保守表面下方的疏水腔中。尽管缺乏序列同源性,SufE的核心区域与IscU具有很强的结构相似性,并且SufE中的硫接受位点与IscU中介导Fe-S簇组装的半胱氨酸残基位置一致。因此,一个保守的核心结构参与介导SufE和IscU与各自操纵子中存在的同源半胱氨酸脱硫酶的相互作用。在包括黄嘌呤脱氢酶在内的多种含Fe-S簇的黄素酶中发现的一个结构域中也观察到了类似的核心结构,在那里它也介导结构域间的相互作用。因此,在进化过程中,SufE/IscU的核心折叠已适应于介导不同氧化还原蛋白系统中的结构域间相互作用。