Institute of Medical Statistics, Computer Sciences and Documentation, Friedrich Schiller University Jena, Jena, Germany.
Neuroimage. 2010 Apr 15;50(3):960-9. doi: 10.1016/j.neuroimage.2009.12.110. Epub 2010 Jan 7.
In this methodological study we present a new version of a Kalman filter technique to estimate high-dimensional time-variant (tv) multivariate autoregressive (tvMVAR) models. It is based on an extension of the state-space model for a multivariate time series to a matrix-state-space model for multi-trial multivariate time series. The result is a general linear Kalman filter (GLKF). The GLKF enables a tvMVAR model estimation which was applied for interaction analysis of simulated data and high-dimensional multi-trial laser-evoked brain potentials (LEP). The tv partial Granger causality index (tvpGCI) was used to investigate the interaction patterns between LEPs derived from an experiment with noxious laser stimulation. First, the new approach was compared with the multi-trial version of the recursive least squares (RLS) algorithm with forgetting factor (Moller et al., 2001) by using 24 distinct electrodes. The RLS failed for a channel number (dimension) higher than 24. Secondly, the analysis was repeated by using all 58 electrodes and the similarities and differences of the GCI-based interaction patterns are discussed. It can be demonstrated that the application of high-dimensional tvMVAR modelling will contribute to a better understanding of the relationship between structure and function.
在这项方法学研究中,我们提出了一种新的卡尔曼滤波器技术,用于估计高维时变(tv)多变量自回归(tvMVAR)模型。它基于对多变量时间序列的状态空间模型的扩展,扩展为多试验多变量时间序列的矩阵状态空间模型。结果是一个通用线性卡尔曼滤波器(GLKF)。GLKF 能够进行 tvMVAR 模型估计,该模型已应用于模拟数据和高维多试验激光诱发电位(LEP)的相互作用分析。使用 tv 部分格兰杰因果关系指数(tvpGCI)来研究来自有害激光刺激实验的 LEP 之间的相互作用模式。首先,通过使用 24 个不同的电极,将新方法与具有遗忘因子的多试验递归最小二乘(RLS)算法的多试验版本(Moller 等人,2001)进行了比较。对于高于 24 的通道数(维度),RLS 失败。其次,通过使用所有 58 个电极重复了分析,并讨论了基于 GCI 的相互作用模式的相似性和差异。可以证明,高维 tvMVAR 建模的应用将有助于更好地理解结构和功能之间的关系。