Cassidy Michael J, Penny William D
Sobell Department of Neurophysiology, Institute of Neurology, University College London, UK.
IEEE Trans Biomed Eng. 2002 Oct;49(10):1142-52. doi: 10.1109/TBME.2002.803511.
We describe a variational Bayesian algorithm for the estimation of a multivariate autoregressive model with time-varying coefficients that adapt according to a linear dynamical system. The algorithm allows for time and frequency domain characterization of nonstationary multivariate signals and is especially suited to the analysis of event-related data. Results are presented on synthetic data and real electroencephalogram data recorded in event-related desynchronization and photic synchronization scenarios.
我们描述了一种变分贝叶斯算法,用于估计具有时变系数的多元自回归模型,这些系数根据线性动态系统进行自适应调整。该算法允许对非平稳多元信号进行时域和频域表征,特别适用于与事件相关的数据的分析。文中给出了在事件相关去同步和光同步场景中记录的合成数据和真实脑电图数据的结果。