Suppr超能文献

气味表征的早期转变。

Early transformations in odor representation.

机构信息

Department of Psychology, Cornell University, Ithaca, NY 14853, USA.

出版信息

Trends Neurosci. 2010 Mar;33(3):130-9. doi: 10.1016/j.tins.2009.12.004. Epub 2010 Jan 8.

Abstract

Sensory representations are repeatedly transformed by neural computations that determine which of their attributes can be effectively processed at each stage. Whereas some early computations are common across multiple sensory systems, they can utilize dissimilar underlying mechanisms depending on the properties of each modality. Recent work in the olfactory bulb has substantially clarified the neural algorithms underlying early odor processing. The high-dimensionality of odor space strictly limits the utility of topographical representations, forcing similarity-dependent computations such as decorrelation to employ unusual neural algorithms. The distinct architectures and properties of the two prominent computational layers in the olfactory bulb suggest that the bulb is directly comparable not only to the retina but also to primary visual cortex.

摘要

感觉表象会被神经计算反复转换,这些计算决定了它们的哪些属性可以在每个阶段有效地被处理。虽然一些早期的计算在多个感觉系统中是共同的,但它们可以根据每种模式的特性利用不同的基础机制。最近在嗅球中的研究极大地阐明了早期气味处理的神经算法。气味空间的高维性严格限制了地形表示的实用性,迫使相似性相关的计算(如去相关)采用不寻常的神经算法。嗅球中两个主要计算层的独特结构和特性表明,不仅可以将嗅球与视网膜直接进行比较,还可以与初级视觉皮层进行比较。

相似文献

1
Early transformations in odor representation.气味表征的早期转变。
Trends Neurosci. 2010 Mar;33(3):130-9. doi: 10.1016/j.tins.2009.12.004. Epub 2010 Jan 8.
2
Construction of odor representations by olfactory bulb microcircuits.嗅球微回路对气味表征的构建
Prog Brain Res. 2014;208:177-203. doi: 10.1016/B978-0-444-63350-7.00007-3.
3
Effect of Interglomerular Inhibitory Networks on Olfactory Bulb Odor Representations.肾小球间抑制网络对嗅球气味代表的影响。
J Neurosci. 2020 Jul 29;40(31):5954-5969. doi: 10.1523/JNEUROSCI.0233-20.2020. Epub 2020 Jun 19.
5
Coding odor identity and odor value in awake rodents.清醒啮齿动物中气味特性和气味值的编码
Prog Brain Res. 2014;208:205-22. doi: 10.1016/B978-0-444-63350-7.00008-5.
6
Neurogenesis drives stimulus decorrelation in a model of the olfactory bulb.神经发生驱动嗅球模型中的刺激去相关。
PLoS Comput Biol. 2012;8(3):e1002398. doi: 10.1371/journal.pcbi.1002398. Epub 2012 Mar 15.
7
Glomerular microcircuits in the olfactory bulb.嗅球中的肾小球微循环。
Neural Netw. 2009 Oct;22(8):1169-73. doi: 10.1016/j.neunet.2009.07.013. Epub 2009 Jul 18.
10
Synaptic adaptation and odor-background segmentation.突触适应性与气味-背景分割
Neurobiol Learn Mem. 2007 Mar;87(3):352-60. doi: 10.1016/j.nlm.2006.09.011. Epub 2006 Dec 1.

引用本文的文献

2
Nonlinear high-activity neuronal excitation enhances odor discrimination.非线性高活性神经元兴奋增强气味辨别能力。
Curr Biol. 2025 Apr 7;35(7):1521-1538.e5. doi: 10.1016/j.cub.2025.02.034. Epub 2025 Mar 18.
9
A physicochemical model of odor sampling.气味采样的物理化学模型。
PLoS Comput Biol. 2021 Jun 11;17(6):e1009054. doi: 10.1371/journal.pcbi.1009054. eCollection 2021 Jun.
10
Extrinsic neuromodulation in the rodent olfactory bulb.啮齿动物嗅球的外在神经调节。
Cell Tissue Res. 2021 Jan;383(1):507-524. doi: 10.1007/s00441-020-03365-9. Epub 2020 Dec 23.

本文引用的文献

3
Olfactory perceptual learning requires adult neurogenesis.嗅觉感知学习需要成年期神经发生。
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17980-5. doi: 10.1073/pnas.0907063106. Epub 2009 Oct 7.
4
From the top down: flexible reading of a fragmented odor map.自上而下:对碎片化气味图谱的灵活解读。
Trends Neurosci. 2009 Oct;32(10):525-31. doi: 10.1016/j.tins.2009.06.001. Epub 2009 Sep 14.
6
Whither the hypercolumn?超柱何去何从?
J Physiol. 2009 Jun 15;587(Pt 12):2791-805. doi: 10.1113/jphysiol.2009.171082.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验