Suppr超能文献

基于主成分分析-自适应神经模糊推理系统(PCA-ANFIS)的 MIA-QSAR 用于 TIBO 衍生物抗 HIV 逆转录酶活性的建模。

MIA-QSAR coupled to principal component analysis-adaptive neuro-fuzzy inference systems (PCA-ANFIS) for the modeling of the anti-HIV reverse transcriptase activities of TIBO derivatives.

机构信息

Department of Chemistry, Faculty of Sciences, and Young Researchers Club - Islamic Azad University, Arak Branch, Arak, Markazi, Iran.

出版信息

Eur J Med Chem. 2010 Apr;45(4):1352-8. doi: 10.1016/j.ejmech.2009.12.028. Epub 2010 Jan 4.

Abstract

The activities of a series of HIV reverse transcriptase inhibitor TIBO derivatives were recently modeled by using genetic function approximation (GFA) and artificial neural networks (ANN) on topological, structural, electronic, spatial and physicochemical descriptors. The prediction results were found to be superior to those previously established. In the present work, the multivariate image analysis applied to quantitative structure-activity relationship (MIA-QSAR) method coupled to principal component analysis-adaptive neuro-fuzzy inference systems (PCA-ANFIS), which accounts for non-linearities, was applied on the same set of compounds previously reported. Additionally, partial least squares (PLS) and multilinear partial least squares (N-PLS) regressions were used for comparison with the MIA-QSAR/PCA-ANFIS model. The ANFIS procedure was capable of accurately correlating the inputs (PCA scores) with the bioactivities. The predictive performance of the MIA-QSAR/PCA-ANFIS model was significantly better than the MIA-QSAR/PLS and N-PLS models, as well as than the reported models based on CoMFA, CoMSIA, OCWLGI and classical descriptors, suggesting that the present methodology may be useful to solve other QSAR problems, specially those involving non-linearities.

摘要

最近,使用遗传函数逼近(GFA)和人工神经网络(ANN),基于拓扑、结构、电子、空间和物理化学描述符对一系列 HIV 逆转录酶抑制剂 TIBO 衍生物的活性进行了建模。预测结果优于先前建立的结果。在本工作中,将多元图像分析与主成分分析-自适应神经模糊推理系统(PCA-ANFIS)相结合的定量构效关系(QSAR)方法(用于处理非线性)应用于先前报道的同一组化合物。此外,还使用偏最小二乘(PLS)和多线性偏最小二乘(N-PLS)回归与 MIA-QSAR/PCA-ANFIS 模型进行比较。ANFIS 程序能够准确地将输入(PCA 得分)与生物活性相关联。MIA-QSAR/PCA-ANFIS 模型的预测性能明显优于 MIA-QSAR/PLS 和 N-PLS 模型,以及基于 CoMFA、CoMSIA、OCWLGI 和经典描述符的报道模型,表明该方法可能有助于解决其他 QSAR 问题,特别是涉及非线性的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验