Noorizadeh Hadi, Sajjadifar Sami, Farmany Abbas
Department of Chemistry, Faculty of Sciences, Islamic Azad University, Ilam Branch, Ilam, Iran.
Med Chem Res. 2013;22(11):5442-5452. doi: 10.1007/s00044-013-0525-4. Epub 2013 Feb 27.
We performed studies on extended series of 79 HEPT ligands (1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine), inhibitors of HIV reverse-transcriptase with anti-HIV biological activity, using quantitative structure-activity relationship (QSAR) methods that imply analysis of correlations and representation of models. A suitable set of molecular descriptors was calculated, and the genetic algorithm was employed to select those descriptors which resulted in the best-fit models. The kernel partial least square and Levenberg-Marquardt artificial neural network were utilized to construct the nonlinear QSAR models. The proposed methods will be of great significance in this research, and would be expected to apply to other similar research fields.
我们使用了定量构效关系(QSAR)方法对一系列79种HEPT配体(1-[(2-羟基乙氧基)甲基]-6-(苯硫基)胸腺嘧啶)进行了研究,这些配体是具有抗HIV生物活性的HIV逆转录酶抑制剂,该方法涉及相关性分析和模型表示。计算了一组合适的分子描述符,并采用遗传算法选择那些能产生最佳拟合模型的描述符。利用核偏最小二乘法和Levenberg-Marquardt人工神经网络构建了非线性QSAR模型。所提出的方法在本研究中将具有重要意义,并有望应用于其他类似的研究领域。