Suppr超能文献

近红外反射光谱(NIRS)在估算农业工业堆肥质量方面的潜力。

The potential of near infrared reflectance spectroscopy (NIRS) for the estimation of agroindustrial compost quality.

机构信息

Department of Agrochemistry and Environment, Miguel Hernandez University, EPS-Orihuela, Orihuela (Alicante), Spain.

出版信息

Sci Total Environ. 2010 Feb 15;408(6):1414-21. doi: 10.1016/j.scitotenv.2009.11.043. Epub 2010 Jan 12.

Abstract

Composting is an environmentally friendly alternative for the recycling of organic wastes and its use is increasing in recent years. An exhaustive monitoring of the composting process and of the final compost characteristics is necessary to certify that the values of compost characteristics are within the limits established by the legislation in order to obtain a safe and marketable product. The analysis of these parameters on each composting batch in the commercial composting plant is time-consuming and expensive. So, their estimation in the composting facilities based on the use of near infrared reflectance spectroscopy (NIRS) could be an interesting approach in order to monitor compost quality. In this study, more than 300 samples from 20 different composting procedures were used to calibrate and validate the NIRS estimation of compost properties (pH, electrical conductivity (EC), total organic matter (TOM), total organic carbon (TOC), total nitrogen (TN) and C/N ratio, macronutrient contents (N, P, K) and potentially pollutant element concentrations (Fe, Cu, Mn and Zn)). The composts used were elaborated using different organic wastes from agroindustrial activities (GS: grape stalk; EGM: exhausted grape marc; GM: grape marc; V: vinasse; CJW: citrus juice waste; Alpeorujo: olive-oil waste; AS: almond skin; EP: exhausted peat; TSW: tomato soup waste; SMS: spent mushroom substrate) co-composted with manures (CM: cattle manure; PM: poultry manure) or urban wastes (SS: sewage sludge) The estimation results showed that the NIRS technique needs to be fitted to each element and property, using specific spectrum transformations, in order to achieve an acceptable accuracy in the prediction. However, excellent prediction results were obtained for TOM and TOC, successful calibrations for pH, EC, Fe and Mn, and moderately successful estimations for TN, C/N ratio, P, K, Cu and Zn.

摘要

堆肥是一种环保的有机废物回收方法,近年来其使用量不断增加。为了确保堆肥特性值在法规规定的范围内,以获得安全和有市场价值的产品,需要对堆肥过程和最终堆肥特性进行全面监测。在商业堆肥厂中,对每个堆肥批次进行这些参数的分析既耗时又昂贵。因此,基于近红外反射光谱(NIRS)的堆肥设施中的估计可能是监测堆肥质量的一种有趣方法。在这项研究中,使用了来自 20 种不同堆肥过程的 300 多个样本,以校准和验证 NIRS 对堆肥特性(pH 值、电导率(EC)、总有机物质(TOM)、总有机碳(TOC)、总氮(TN)和 C/N 比、常量营养素含量(N、P、K)和潜在污染物元素浓度(Fe、Cu、Mn 和 Zn)的估计。使用来自农业工业活动(GS:葡萄秸秆;EGM:废弃葡萄渣;GM:葡萄渣;V:酒糟;CJW:柑橘汁废物;Alpeorujo:橄榄油废物;AS:杏仁皮;EP:废弃泥炭;TSW:番茄汤废物;SMS:用过的蘑菇基质)的不同有机废物与肥料(CM:牛粪;PM:家禽粪便)或城市废物(SS:污水污泥)一起堆肥来制备这些堆肥。估计结果表明,NIRS 技术需要针对每个元素和特性进行拟合,使用特定的光谱变换,以达到可接受的预测精度。然而,对于 TOM 和 TOC 获得了极好的预测结果,对于 pH 值、EC、Fe 和 Mn 成功地进行了校准,对于 TN、C/N 比、P、K、Cu 和 Zn 则获得了适度成功的估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验