Shen Guangrong, Chen Yanchi, Zhang Jingying, Wu Yu, Yi Yang, Li Shengyong, Yin Shan
School of Agriculture and Biology and Research Centre for Low-Carbon Agriculture, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China.
Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 200240, China.
Heliyon. 2023 Feb 24;9(3):e14010. doi: 10.1016/j.heliyon.2023.e14010. eCollection 2023 Mar.
Hyperspectral technology, with its high spectrum resolution and nanometer continuous spectral information acquisition ability, provide a possibility for rapidly and nondestructive evaluating compost maturity. In this study, the near-infrared spectroscopy (NIRS) analysis techniques was used to analyze quantitatively organic matter (OM) content, total nitrogen (TN) content and carbon-nitrogen (C/N) ratio in compost based on two different composting procedures. In the basis of spectra preprocessing and strategies of variable selection, the nonlinear modeling LBC-siPLS-PLSR for OM, MSC-SPA-PLSR for TN and R-SPA-PLSR for C/N ratio was respectively constructed using partial least squares regression (PLSR). LBC-siPLS-PLSR, MSC-SPA-PLSR and R-SPA-PLSR provided a better prediction capability with root mean square error of prediction, the coefficient of determination for prediction and residual predictive deviation values of 4.061, 0.746 and 2.02 for OM, values of 0.205, 0.65 and 1.71 for TN and values of 1.11, 0.706 and 2.07 for C/N ratio, respectively. These results showed that the NIRS technique could be fitted to each element, using specific spectrum pretreatment, in order to achieve an acceptable accuracy in the prediction.
高光谱技术具有高光谱分辨率和纳米级连续光谱信息采集能力,为快速无损评估堆肥成熟度提供了可能。本研究基于两种不同的堆肥工艺,采用近红外光谱(NIRS)分析技术对堆肥中的有机质(OM)含量、总氮(TN)含量和碳氮比(C/N)进行定量分析。在光谱预处理和变量选择策略的基础上,分别采用偏最小二乘回归(PLSR)构建了用于OM的非线性建模LBC-siPLS-PLSR、用于TN的MSC-SPA-PLSR和用于C/N比的R-SPA-PLSR。LBC-siPLS-PLSR、MSC-SPA-PLSR和R-SPA-PLSR具有较好的预测能力,预测均方根误差、预测决定系数和剩余预测偏差值分别为:OM为4.061、0.746和2.02;TN为0.205、0.65和1.71;C/N比为1.11、0.706和2.07。这些结果表明,采用特定的光谱预处理,NIRS技术可以适用于每个元素,以实现可接受的预测精度。