Laboratoire Stress Oxydants et Cancer, URA 2096, IBITECS, CEA-Saclay, F-91191 Gif-sur-Yvette, France.
J Biol Chem. 2010 Mar 12;285(11):8463-71. doi: 10.1074/jbc.M109.051714. Epub 2010 Jan 8.
The NRF2 transcription factor regulates a major environmental and oxidative stress response. NRF2 is itself negatively regulated by KEAP1, the adaptor of a Cul3-ubiquitin ligase complex that marks NRF2 for proteasomal degradation by ubiquitination. Electrophilic compounds activate NRF2 primarily by inhibiting KEAP1-dependent NRF2 degradation, through alkylation of specific cysteines. We have examined the impact on KEAP1 of reactive oxygen and nitrogen species, which are also NRF2 inducers. We found that in untreated cells, a fraction of KEAP1 carried a long range disulfide linking Cys(226) and Cys(613). Exposing cells to hydrogen peroxide, to the nitric oxide donor spermine NONOate, to hypochlorous acid, or to S-nitrosocysteine further increased this disulfide and promoted formation of a disulfide linking two KEAP1 molecules via Cys(151). None of these oxidants, except S-nitrocysteine, caused KEAP1 S-nitrosylation. A cysteine mutant preventing KEAP1 intermolecular disulfide formation also prevented NRF2 stabilization in response to oxidants, whereas those preventing intramolecular disulfide formation were functionally silent. Further, simultaneously inactivating the thioredoxin and glutathione pathways led both to major constitutive KEAP1 oxidation and NRF2 stabilization. We propose that KEAP1 intermolecular disulfide formation via Cys(151) underlies the activation of NRF2 by reactive oxygen and nitrogen species.
NRF2 转录因子调节主要的环境和氧化应激反应。NRF2 自身受到 KEAP1 的负调控,KEAP1 是 Cul3-泛素连接酶复合物的衔接蛋白,该复合物通过泛素化标记 NRF2 进行蛋白酶体降解。亲电化合物主要通过抑制 KEAP1 依赖性 NRF2 降解来激活 NRF2,这是通过对特定半胱氨酸的烷基化实现的。我们研究了活性氧和氮物种对 KEAP1 的影响,这些物质也是 NRF2 的诱导剂。我们发现,在未处理的细胞中,一部分 KEAP1 带有长距离二硫键,连接半胱氨酸 226 和半胱氨酸 613。将细胞暴露于过氧化氢、一氧化氮供体 spermine NONOate、次氯酸或 S-亚硝基半胱氨酸会进一步增加这种二硫键,并促进通过半胱氨酸 151 连接两个 KEAP1 分子的二硫键形成。除 S-亚硝基半胱氨酸外,这些氧化剂都不会导致 KEAP1 的 S-亚硝基化。一种阻止 KEAP1 分子间二硫键形成的半胱氨酸突变体也阻止了氧化剂诱导的 NRF2 稳定,而那些阻止分子内二硫键形成的突变体则没有功能。此外,同时使硫氧还蛋白和谷胱甘肽途径失活会导致 KEAP1 的主要组成型氧化和 NRF2 的稳定。我们提出,活性氧和氮物种通过半胱氨酸 151 形成 KEAP1 分子间二硫键是激活 NRF2 的基础。