Suppr超能文献

硝态氮试剂和 H2O2 通过使 KEAP1 二硫键形成来激活 NRF2。

Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation.

机构信息

Laboratoire Stress Oxydants et Cancer, URA 2096, IBITECS, CEA-Saclay, F-91191 Gif-sur-Yvette, France.

出版信息

J Biol Chem. 2010 Mar 12;285(11):8463-71. doi: 10.1074/jbc.M109.051714. Epub 2010 Jan 8.

Abstract

The NRF2 transcription factor regulates a major environmental and oxidative stress response. NRF2 is itself negatively regulated by KEAP1, the adaptor of a Cul3-ubiquitin ligase complex that marks NRF2 for proteasomal degradation by ubiquitination. Electrophilic compounds activate NRF2 primarily by inhibiting KEAP1-dependent NRF2 degradation, through alkylation of specific cysteines. We have examined the impact on KEAP1 of reactive oxygen and nitrogen species, which are also NRF2 inducers. We found that in untreated cells, a fraction of KEAP1 carried a long range disulfide linking Cys(226) and Cys(613). Exposing cells to hydrogen peroxide, to the nitric oxide donor spermine NONOate, to hypochlorous acid, or to S-nitrosocysteine further increased this disulfide and promoted formation of a disulfide linking two KEAP1 molecules via Cys(151). None of these oxidants, except S-nitrocysteine, caused KEAP1 S-nitrosylation. A cysteine mutant preventing KEAP1 intermolecular disulfide formation also prevented NRF2 stabilization in response to oxidants, whereas those preventing intramolecular disulfide formation were functionally silent. Further, simultaneously inactivating the thioredoxin and glutathione pathways led both to major constitutive KEAP1 oxidation and NRF2 stabilization. We propose that KEAP1 intermolecular disulfide formation via Cys(151) underlies the activation of NRF2 by reactive oxygen and nitrogen species.

摘要

NRF2 转录因子调节主要的环境和氧化应激反应。NRF2 自身受到 KEAP1 的负调控,KEAP1 是 Cul3-泛素连接酶复合物的衔接蛋白,该复合物通过泛素化标记 NRF2 进行蛋白酶体降解。亲电化合物主要通过抑制 KEAP1 依赖性 NRF2 降解来激活 NRF2,这是通过对特定半胱氨酸的烷基化实现的。我们研究了活性氧和氮物种对 KEAP1 的影响,这些物质也是 NRF2 的诱导剂。我们发现,在未处理的细胞中,一部分 KEAP1 带有长距离二硫键,连接半胱氨酸 226 和半胱氨酸 613。将细胞暴露于过氧化氢、一氧化氮供体 spermine NONOate、次氯酸或 S-亚硝基半胱氨酸会进一步增加这种二硫键,并促进通过半胱氨酸 151 连接两个 KEAP1 分子的二硫键形成。除 S-亚硝基半胱氨酸外,这些氧化剂都不会导致 KEAP1 的 S-亚硝基化。一种阻止 KEAP1 分子间二硫键形成的半胱氨酸突变体也阻止了氧化剂诱导的 NRF2 稳定,而那些阻止分子内二硫键形成的突变体则没有功能。此外,同时使硫氧还蛋白和谷胱甘肽途径失活会导致 KEAP1 的主要组成型氧化和 NRF2 的稳定。我们提出,活性氧和氮物种通过半胱氨酸 151 形成 KEAP1 分子间二硫键是激活 NRF2 的基础。

相似文献

1
Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation.
J Biol Chem. 2010 Mar 12;285(11):8463-71. doi: 10.1074/jbc.M109.051714. Epub 2010 Jan 8.
3
The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
Nitric Oxide. 2011 Aug 1;25(2):153-60. doi: 10.1016/j.niox.2011.02.007. Epub 2011 Mar 6.
5
Four-octyl itaconate activates Keap1-Nrf2 signaling to protect neuronal cells from hydrogen peroxide.
Cell Commun Signal. 2018 Nov 15;16(1):81. doi: 10.1186/s12964-018-0294-2.
7
Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells.
Nitric Oxide. 2011 Aug 1;25(2):161-8. doi: 10.1016/j.niox.2011.06.001. Epub 2011 Jun 15.
9
Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
Genes Cells. 2011 Feb;16(2):123-40. doi: 10.1111/j.1365-2443.2010.01473.x.
10
Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism.
J Biol Chem. 2011 Apr 22;286(16):14019-27. doi: 10.1074/jbc.M110.190710. Epub 2011 Feb 25.

引用本文的文献

2
The impact of oxidative stress and the NRF2-KEAP1-ARE signaling pathway on anticancer drug resistance.
Oncol Res. 2025 Jul 18;33(8):1819-1834. doi: 10.32604/or.2025.065755. eCollection 2025.
4
Oxidative stress response and NRF2 signaling pathway in autism spectrum disorder.
Redox Biol. 2025 Jun;83:103661. doi: 10.1016/j.redox.2025.103661. Epub 2025 May 2.
7
Diabetic Cardiomyopathy: Pathophysiology and Novel Therapies.
Brown J Hosp Med. 2022 Aug 26;1(3):37850. doi: 10.56305/001c.37850. eCollection 2022.
8
The Two Faces of Reactive Oxygen Species in Cancer.
Annu Rev Cancer Biol. 2017 Mar;1:79-98. doi: 10.1146/annurev-cancerbio-041916-065808. Epub 2016 Aug 26.
10
Cellular and molecular roles of reactive oxygen species in wound healing.
Commun Biol. 2024 Nov 19;7(1):1534. doi: 10.1038/s42003-024-07219-w.

本文引用的文献

1
Cysteine-based regulation of the CUL3 adaptor protein Keap1.
Toxicol Appl Pharmacol. 2010 Apr 1;244(1):21-6. doi: 10.1016/j.taap.2009.06.016. Epub 2009 Jun 26.
3
NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer.
Trends Biochem Sci. 2009 Apr;34(4):176-88. doi: 10.1016/j.tibs.2008.12.008. Epub 2009 Mar 25.
4
Crystal structure of the Bach1 BTB domain and its regulation of homodimerization.
Genes Cells. 2009 Feb;14(2):167-78. doi: 10.1111/j.1365-2443.2008.01259.x. Epub 2008 Jan 12.
6
Prospective type 1 and type 2 disulfides of Keap1 protein.
Chem Res Toxicol. 2008 Oct;21(10):2051-60. doi: 10.1021/tx800226m. Epub 2008 Aug 26.
7
Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity.
Mol Cell Biol. 2008 Apr;28(8):2758-70. doi: 10.1128/MCB.01704-07. Epub 2008 Feb 11.
8
Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3.
Chem Res Toxicol. 2008 Mar;21(3):705-10. doi: 10.1021/tx700302s. Epub 2008 Feb 6.
10
Identification of Nrf2-dependent airway epithelial adaptive response to proinflammatory oxidant-hypochlorous acid challenge by transcription profiling.
Am J Physiol Lung Cell Mol Physiol. 2008 Mar;294(3):L469-77. doi: 10.1152/ajplung.00310.2007. Epub 2007 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验