Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden.
FASEB J. 2010 Jun;24(6):1824-37. doi: 10.1096/fj.09-148072. Epub 2010 Jan 8.
Phosphatidylinositide 3-kinases (PI3Ks) play central roles in insulin signal transduction. While the contribution of class Ia PI3K members has been extensively studied, the role of class II members remains poorly understood. The diverse actions of class II PI3K-C2alpha have been attributed to its lipid product PI(3)P. By applying pharmacological inhibitors, transient overexpression and small-interfering RNA-based knockdown of PI3K and PKB/Akt isoforms, together with PI-lipid profiling and live-cell confocal and total internal reflection fluorescence microscopy, we now demonstrate that in response to insulin, PI3K-C2alpha generates PI(3,4)P(2), which allows the selective activation of PKBalpha/Akt1. Knockdown of PI3K-C2alpha expression and subsequent reduction of PKBalpha/Akt1 activity in the pancreatic beta-cell impaired glucose-stimulated insulin release, at least in part, due to reduced glucokinase expression and increased AS160 activity. Hence, our results identify signal transduction via PI3K-C2alpha as a novel pathway whereby insulin activates PKB/Akt and thus discloses PI3K-C2alpha as a potential drugable target in type 2 diabetes. The high degree of codistribution of PI3K-C2alpha and PKBalpha/Akt1 with insulin receptor B type, but not A type, in the same plasma membrane microdomains lends further support to the concept that selectivity in insulin signaling is achieved by the spatial segregation of signaling events.
磷脂酰肌醇 3-激酶 (PI3Ks) 在胰岛素信号转导中发挥核心作用。虽然已经广泛研究了 I 类 PI3K 成员的贡献,但 II 类成员的作用仍知之甚少。II 类 PI3K-C2alpha 的多种作用归因于其脂质产物 PI(3)P。通过应用药理学抑制剂、瞬时过表达和基于小干扰 RNA 的 PI3K 和 PKB/Akt 同工型敲低,以及 PI-脂质谱分析和活细胞共聚焦和全内反射荧光显微镜,我们现在证明,胰岛素刺激下,PI3K-C2alpha 生成 PI(3,4)P(2),允许 PKBalpha/Akt1 的选择性激活。PI3K-C2alpha 表达的敲低和随后的 PKBalpha/Akt1 活性降低会损害胰腺 β 细胞中葡萄糖刺激的胰岛素释放,至少部分原因是葡萄糖激酶表达降低和 AS160 活性增加。因此,我们的结果确定了通过 PI3K-C2alpha 的信号转导是胰岛素激活 PKB/Akt 的新途径,从而揭示了 PI3K-C2alpha 是 2 型糖尿病的潜在可药物靶标。PI3K-C2alpha 和 PKBalpha/Akt1 与胰岛素受体 B 型而非 A 型在同一质膜微域中的高度共定位,进一步支持了信号事件的空间隔离实现胰岛素信号选择性的概念。