Department of Chemistry and Biochemistry, University of California at Los Angeles, California 90095-1569, USA.
Nat Mater. 2010 Feb;9(2):146-51. doi: 10.1038/nmat2612. Epub 2010 Jan 10.
Capacitive energy storage is distinguished from other types of electrochemical energy storage by short charging times and the ability to deliver significantly more power than batteries. A key limitation to this technology is its low energy density and for this reason there is considerable interest in exploring pseudocapacitive materials where faradaic mechanisms offer increased levels of energy storage. Here we show that the capacitive charge-storage properties of mesoporous films of iso-oriented alpha-MoO(3) are superior to those of either mesoporous amorphous material or non-porous crystalline MoO(3). Whereas both crystalline and amorphous mesoporous materials show redox pseudocapacitance, the iso-oriented layered crystalline domains enable lithium ions to be inserted into the van der Waals gaps of the alpha-MoO(3). We propose that this extra contribution arises from an intercalation pseudocapacitance, which occurs on the same timescale as redox pseudocapacitance. The result is increased charge-storage capacity without compromising charge/discharge kinetics in mesoporous crystalline MoO(3).
电容储能与其他类型的电化学储能的区别在于其充电时间短,并且能够提供比电池高得多的功率。这项技术的一个关键限制是其能量密度低,因此人们非常有兴趣探索赝电容材料,其中法拉第机制提供了更高水平的储能。在这里,我们表明,各向同性α-MoO(3)介孔薄膜的电容存储性能优于介孔无定形材料或无孔结晶 MoO(3)。虽然结晶和无定形介孔材料都表现出氧化还原赝电容,但各向同性层状结晶域使得锂离子能够插入α-MoO(3)的范德华间隙中。我们提出,这种额外的贡献来自于插层赝电容,它与氧化还原赝电容同时发生。结果是在不影响介孔结晶 MoO(3)的充放电动力学的情况下,增加了电荷存储容量。