Suppr超能文献

理解锌离子混合电容器中纳米多孔碳上的多阶段电荷存储

Understanding Multi-Stage Charge Storage on Nanoporous Carbons in Zn-Ion Hybrid Capacitors.

作者信息

Li Jiaxin, Ge Kangkang, Grammenos Anastatios Orestis, Taberna Pierre-Louis, Simon Patrice, Antonietti Markus, Odziomek Mateusz

机构信息

Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.

CIRIMAT, UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 route de Narbonne, Toulouse, 31062, France.

出版信息

Adv Mater. 2025 Jun;37(24):e2502422. doi: 10.1002/adma.202502422. Epub 2025 May 6.

Abstract

Zn-ion hybrid capacitors (ZIHCs) are promising high-power energy storage devices. However, the underlying charge storage mechanisms, especially the influence of proton storage, remain poorly understood. Herein, the model porous carbons are synthesized having similar specific surface areas (SSAs) and surface chemistry but different pore sizes. They highlight the role of supermicropores and small mesopores (0.86-4 nm) enabling a high capacity of 198 mAh g (capacitance of 446 F g), while larger mesopores (4-13 nm) significantly enhance cycling stability, exceeding 0.6 million cycles. Electrochemical studies, including EQCM analysis, reveal a 4-stage charge-storage process under cathodic polarization, comprising adsorption and desolvation of hydrated Zn ions, followed by water reduction, catalyzed by Zn, and formation of H. The rising pH leads to the formation of insoluble zinc hydroxysulfate hydrates (ZHS). Depending on the pore architecture, the precipitation of ZHS has different effects on the overall stability of cycling. The study overall: (i) presents a simplified method for pore control in carbon synthesis; (ii) discuss the effect of pore size on charge storage and cycling stability in respect of ZHS formation; (iii) sheds light on the charge storage mechanism indicating the important contribution of cation effect known from electrocatalysis on faradaic charge storage mechanism.

摘要

锌离子混合电容器(ZIHC)是很有前景的高功率储能装置。然而,其潜在的电荷存储机制,尤其是质子存储的影响,仍知之甚少。在此,合成了具有相似比表面积(SSA)和表面化学性质但孔径不同的模型多孔碳。它们突出了超微孔和小中孔(0.86 - 4纳米)的作用,其可实现198 mAh g的高容量(446 F g的电容),而较大的中孔(4 - 13纳米)显著提高循环稳定性,超过60万次循环。包括石英晶体微天平(EQCM)分析在内的电化学研究揭示了阴极极化下的四阶段电荷存储过程,包括水合锌离子的吸附和去溶剂化,随后是锌催化的水还原以及氢的形成。pH值升高导致形成不溶性硫酸锌水合物(ZHS)。根据孔结构,ZHS的沉淀对循环的整体稳定性有不同影响。总体而言,该研究:(i)提出了一种在碳合成中控制孔的简化方法;(ii)讨论了孔径对ZHS形成过程中电荷存储和循环稳定性的影响;(iii)阐明了电荷存储机制,表明电催化中已知的阳离子效应在法拉第电荷存储机制中具有重要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/597f/12177857/c9338851d0d3/ADMA-37-2502422-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验