Suppr超能文献

[Substances transport in an underground river of typical karst watershed during storm events].

作者信息

Yang Ping-Heng, Kuang Ying-Lun, Yuan Wen-Hao, Jia Peng, He Qiu-Fang, Lin Yu-Shi

机构信息

School of Geographical Sciences, Southwest University, Chongqing 400715, China.

出版信息

Huan Jing Ke Xue. 2009 Nov;30(11):3249-55.

Abstract

Hydrologic process, turbidity, suspended particles matters (SPM), major cations and TOC concentrations during two storm events in late April 2008 were monitored at Jiangjia Spring which is the outlet of Qingmu Guan underground river system. Scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS) analyses of SPM were also performed in order to investigate the transport characteristics of substances, such as SPM, turbidity and major cations in the underground river of typical karst watershed. The results show that at a single and well-developed karst conduit of Jiangjia Spring, discharge, turbidity, and concentrations of SPM, major cations and TOC respond promptly to the rainfall. The carbonate-derived cations including Ca2+, Mg2+ and Sr2+ are subject to dilution effect during the rising limb of discharge. The elevation in turbidity and SPM concentration is a result of the gradual increase of allochthonous substances (soil) flux input from the surface. Al3+, Fe, Mn, Ba2+ and TOC are concomitant substances of SPM. And their concentrations are ascending with turbid rise. The flux of SPM in diameter > 0.45 microm in the underground river is about 9.7 tons during the events. The bad water quality suggests us that the spring water is unfit to drink without purification during the period of rising and recession time of discharge at Jiangjia Spring. Thus, soil erosion and nutrient losing not only strongly destroy the fragile karst ecological environment, but also lead to non-point source pollution, and seriously threaten the drinking water safety of locals.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验