Suppr超能文献

蓝藻光系统I寡聚体的多样性

Diversity Among Cyanobacterial Photosystem I Oligomers.

作者信息

Chen Ming, Liu Xuan, He Yujie, Li Ningning, He Jun, Zhang Ying

机构信息

The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.

Center for Cell Fate and Lineage (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.

出版信息

Front Microbiol. 2022 Feb 24;12:781826. doi: 10.3389/fmicb.2021.781826. eCollection 2021.

Abstract

Unraveling the oligomeric states of the photosystem I complex is essential to understanding the evolution and native mechanisms of photosynthesis. The molecular composition and functions of this complex are highly conserved among cyanobacteria, algae, and plants; however, its structure varies considerably between species. In cyanobacteria, the photosystem I complex is a trimer in most species, but monomer, dimer and tetramer arrangements with full physiological function have recently been characterized. Higher order oligomers have also been identified in some heterocyst-forming cyanobacteria and their close unicellular relatives. Given technological progress in cryo-electron microscope single particle technology, structures of PSI dimers, tetramers and some heterogeneous supercomplexes have been resolved into near atomic resolution. Recent developments in photosystem I oligomer studies have largely enriched theories on the structure and function of these photosystems.

摘要

解析光系统I复合体的寡聚状态对于理解光合作用的进化和天然机制至关重要。该复合体的分子组成和功能在蓝细菌、藻类和植物中高度保守;然而,其结构在不同物种之间差异很大。在蓝细菌中,大多数物种的光系统I复合体是三聚体,但最近已鉴定出具有完整生理功能的单体、二聚体和四聚体排列。在一些形成异形胞的蓝细菌及其密切相关的单细胞亲属中也发现了高阶寡聚体。鉴于低温电子显微镜单颗粒技术的技术进步,PSI二聚体、四聚体和一些异质超复合体的结构已解析到接近原子分辨率。光系统I寡聚体研究的最新进展在很大程度上丰富了这些光系统结构和功能的理论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/917e/8908432/f0347ea3bf34/fmicb-12-781826-g001.jpg

相似文献

1
Diversity Among Cyanobacterial Photosystem I Oligomers.
Front Microbiol. 2022 Feb 24;12:781826. doi: 10.3389/fmicb.2021.781826. eCollection 2021.
2
Cryo-EM structure of a tetrameric photosystem I from TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium.
Plant Commun. 2021 Oct 13;3(1):100248. doi: 10.1016/j.xplc.2021.100248. eCollection 2022 Jan 10.
3
Structure of a tetrameric photosystem I from a glaucophyte alga Cyanophora paradoxa.
Nat Commun. 2022 Mar 30;13(1):1679. doi: 10.1038/s41467-022-29303-7.
4
Structural Diversity of Photosystem I and Its Light-Harvesting System in Eukaryotic Algae and Plants.
Front Plant Sci. 2021 Nov 30;12:781035. doi: 10.3389/fpls.2021.781035. eCollection 2021.
5
Structure Insights Into Photosystem I Octamer From Cyanobacteria.
Front Microbiol. 2022 May 6;13:876122. doi: 10.3389/fmicb.2022.876122. eCollection 2022.
6
Structure and Function of the Photosystem Supercomplexes.
Front Plant Sci. 2018 Mar 20;9:357. doi: 10.3389/fpls.2018.00357. eCollection 2018.
7
Cryo-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions.
Biochim Biophys Acta. 2016 Sep;1857(9):1619-1626. doi: 10.1016/j.bbabio.2016.06.012. Epub 2016 Jul 5.
8
Physiological and evolutionary implications of tetrameric photosystem I in cyanobacteria.
Nat Plants. 2019 Dec;5(12):1309-1319. doi: 10.1038/s41477-019-0566-x. Epub 2019 Dec 9.
9
10
Structural characterization of the photosystems in the green alga Chlorella sorokiniana.
Planta. 2020 Oct 9;252(5):79. doi: 10.1007/s00425-020-03487-y.

引用本文的文献

1
Structure and evolution of photosystem I in the early-branching cyanobacterium .
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2427090122. doi: 10.1073/pnas.2427090122. Epub 2025 May 14.
3
Structure and evolution of Photosystem I in the early-branching cyanobacterium .
bioRxiv. 2024 Nov 2:2024.10.31.621444. doi: 10.1101/2024.10.31.621444.
5
Structure, function, and assembly of PSI in thylakoid membranes of vascular plants.
Plant Cell. 2024 Oct 3;36(10):4080-4108. doi: 10.1093/plcell/koae169.

本文引用的文献

1
Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex.
Nat Plants. 2022 Oct;8(10):1191-1201. doi: 10.1038/s41477-022-01253-4. Epub 2022 Oct 13.
2
The structure of photosystem I from a high-light-tolerant cyanobacteria.
Elife. 2021 Aug 26;10:e67518. doi: 10.7554/eLife.67518.
3
Structural basis of LhcbM5-mediated state transitions in green algae.
Nat Plants. 2021 Aug;7(8):1119-1131. doi: 10.1038/s41477-021-00960-8. Epub 2021 Jul 8.
4
Probing the biogenesis pathway and dynamics of thylakoid membranes.
Nat Commun. 2021 Jun 9;12(1):3475. doi: 10.1038/s41467-021-23680-1.
5
Structure of the far-red light utilizing photosystem I of Acaryochloris marina.
Nat Commun. 2021 Apr 20;12(1):2333. doi: 10.1038/s41467-021-22502-8.
7
The structure of a red-shifted photosystem I reveals a red site in the core antenna.
Nat Commun. 2020 Oct 19;11(1):5279. doi: 10.1038/s41467-020-18884-w.
8
The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin.
Nat Plants. 2020 Oct;6(10):1300-1305. doi: 10.1038/s41477-020-00779-9. Epub 2020 Oct 5.
9
Structural variability, coordination and adaptation of a native photosynthetic machinery.
Nat Plants. 2020 Jul;6(7):869-882. doi: 10.1038/s41477-020-0694-3. Epub 2020 Jul 13.
10
Distinct structural modulation of photosystem I and lipid environment stabilizes its tetrameric assembly.
Nat Plants. 2020 Mar;6(3):314-320. doi: 10.1038/s41477-020-0610-x. Epub 2020 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验