Department of Electronics andInformation, IIT Unit, Politecnico di Milano, 20133 Milano, Italy.
IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):20-8. doi: 10.1109/TNSRE.2009.2032642. Epub 2009 Sep 22.
A relevant issue in a brain-computer interface (BCI) is the capability to efficiently convert user intentions into correct actions, and how to properly measure this efficiency. Usually, the evaluation of a BCI system is approached through the quantification of the classifier performance, which is often measured by means of the information transfer rate (ITR). A shortcoming of this approach is that the control interface design is neglected, and hence a poor description of the overall performance is obtained for real systems. To overcome this limitation, we propose a novel metric based on the computation of BCI Utility. The new metric can accurately predict the overall performance of a BCI system, as it takes into account both the classifier and the control interface characteristics. It is therefore suitable for design purposes, where we have to select the best options among different components and different parameters setup. In the paper, we compute Utility in two scenarios, a P300 speller and a P300 speller with an error correction system (ECS), for different values of accuracy of the classifier and recall of the ECS. Monte Carlo simulations confirm that Utility predicts the performance of a BCI better than ITR.
在脑机接口(BCI)中,一个相关的问题是如何有效地将用户意图转换为正确的动作,以及如何正确衡量这种效率。通常,通过量化分类器性能来评估 BCI 系统,而分类器性能通常通过信息传输率(ITR)来衡量。这种方法的一个缺点是忽略了控制接口的设计,因此无法对实际系统的整体性能进行很好的描述。为了克服这一局限性,我们提出了一种基于 BCI 效用计算的新度量标准。新的度量标准可以准确地预测 BCI 系统的整体性能,因为它考虑了分类器和控制接口的特征。因此,它适用于设计目的,在设计中,我们必须在不同的组件和不同的参数设置之间选择最佳选项。在本文中,我们针对不同的分类器精度和 ECS 召回率,在 P300 拼写器和带 ECS 的 P300 拼写器这两种情况下计算了效用。蒙特卡罗模拟证实,效用比 ITR 更能预测 BCI 的性能。