Ma Tianwen, Huggins Jane E, Kang Jian
Dept. of Biostatistics, University of Michigan, Ann Arbor, USA.
Dept. of Physical Med. & Rehabilitation, University of Michigan, Ann Arbor, USA.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2021 Dec;2021:3648-3655. doi: 10.1109/bibm52615.2021.9669724. Epub 2022 Jan 14.
A Brain-Computer Interface (BCI) is a device that interprets brain activity to help people with disabilities communicate. The P300 ERP-based BCI speller displays a series of events on the screen and searches the elicited electroencephalogram (EEG) data for target P300 event-related potential (ERP) responses among a series of non-target events. The Checkerboard (CB) paradigm is a common stimulus presentation paradigm. Although a few studies have proposed data-driven methods for stimulus selection, they suffer from intractable decision rules, large computation complexity, or error propagation for participants who perform poorly under the static paradigm. In addition, none of the methods have been applied to the CB paradigm directly. In this work, we propose a sequence-based adaptive stimulus selection method using Thompson Sampling in the multi-bandit problem with multiple actions. During each sequence, the algorithm selects a random subset of stimuli with fixed size, aiming to identify all target stimuli and to improve the spelling speed by reducing the number of unnecessary non-target stimuli. We compute "clean" stimulus-specific rewards from raw classifier scores via the Bayes rule. We perform extensive simulation studies to compare our algorithm to the static CB paradigm. We show the robustness of our algorithm by considering the constraints of practical use. For scenarios where simulated data resemble the real data the most, the spelling efficiency of our algorithm increases by more than 70%, compared to the static CB paradigm.
脑机接口(BCI)是一种解读大脑活动以帮助残疾人进行交流的设备。基于P300事件相关电位(ERP)的BCI拼写器在屏幕上显示一系列事件,并在一系列非目标事件中搜索诱发的脑电图(EEG)数据,以寻找目标P300事件相关电位(ERP)响应。棋盘格(CB)范式是一种常见的刺激呈现范式。尽管一些研究提出了数据驱动的刺激选择方法,但它们存在决策规则难处理、计算复杂度高或对于在静态范式下表现不佳的参与者存在误差传播等问题。此外,这些方法都没有直接应用于CB范式。在这项工作中,我们提出了一种基于序列的自适应刺激选择方法,该方法在具有多个动作的多臂老虎机问题中使用汤普森采样。在每个序列中,该算法选择一个固定大小的随机刺激子集,旨在识别所有目标刺激,并通过减少不必要的非目标刺激数量来提高拼写速度。我们通过贝叶斯规则从原始分类器分数中计算“干净的”特定于刺激的奖励。我们进行了广泛的模拟研究,将我们的算法与静态CB范式进行比较。我们通过考虑实际使用的约束来展示我们算法的鲁棒性。对于模拟数据与真实数据最相似的场景,与静态CB范式相比,我们算法的拼写效率提高了70%以上。