Suppr超能文献

在酵母中,H3 K56 的乙酰化对于 RNA 聚合酶 II 通过异染色质进行转录延伸是必需的。

Acetylation of H3 K56 is required for RNA polymerase II transcript elongation through heterochromatin in yeast.

机构信息

Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia.

出版信息

Mol Cell Biol. 2010 Mar;30(6):1467-77. doi: 10.1128/MCB.01151-09. Epub 2010 Jan 11.

Abstract

In Saccharomyces cerevisiae SIR proteins mediate transcriptional silencing, forming heterochromatin structures at repressed loci. Although recruitment of transcription initiation factors can occur even to promoters packed in heterochromatin, it is unclear whether heterochromatin inhibits RNA polymerase II (RNAPII) transcript elongation. To clarify this issue, we recruited SIR proteins to the coding region of an inducible gene and characterized the effects of the heterochromatic structure on transcription. Surprisingly, RNAPII is fully competent for transcription initiation and elongation at the locus, leading to significant loss of heterochromatin proteins from the region. A search for auxiliary factors required for transcript elongation through the heterochromatic locus revealed that two proteins involved in histone H3 lysine 56 acetylation, Rtt109 and Asf1, are needed for efficient transcript elongation by RNAPII. The efficiency of transcription through heterochromatin is also impaired in a strain carrying the K56R mutation in histone H3. Our results show that H3 K56 modification is required for efficient transcription of heterochromatic locus by RNAPII, and we propose that transcription-coupled incorporation of H3 acetylated K56 (acK56) into chromatin is needed for efficient opening of heterochromatic loci for transcription.

摘要

在酿酒酵母中,SIR 蛋白介导转录沉默,在受抑制的基因座形成异染色质结构。尽管转录起始因子的募集甚至可以发生在包装在异染色质中的启动子上,但异染色质是否抑制 RNA 聚合酶 II(RNAPII)转录延伸尚不清楚。为了澄清这个问题,我们将 SIR 蛋白募集到一个可诱导基因的编码区,并研究了异染色质结构对转录的影响。令人惊讶的是,RNAPII 在该基因座上完全有能力进行转录起始和延伸,导致该区域的异染色质蛋白大量丢失。为了寻找通过异染色质基因座延伸转录所需的辅助因子,我们发现两个参与组蛋白 H3 赖氨酸 56 乙酰化的蛋白质,Rtt109 和 Asf1,对于 RNAPII 的有效转录延伸是必需的。在携带组蛋白 H3 K56 突变的菌株中,通过异染色质的转录效率也受到损害。我们的结果表明,H3 K56 修饰对于 RNAPII 有效转录异染色质基因座是必需的,我们提出转录偶联的组蛋白 H3 乙酰化 K56(acK56)掺入染色质对于异染色质基因座的有效转录开放是必需的。

相似文献

1
Acetylation of H3 K56 is required for RNA polymerase II transcript elongation through heterochromatin in yeast.
Mol Cell Biol. 2010 Mar;30(6):1467-77. doi: 10.1128/MCB.01151-09. Epub 2010 Jan 11.
4
Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast.
Mol Cell. 2007 Sep 21;27(6):890-900. doi: 10.1016/j.molcel.2007.07.021.
5
Reconstitution of heterochromatin-dependent transcriptional gene silencing.
Mol Cell. 2009 Sep 24;35(6):769-81. doi: 10.1016/j.molcel.2009.07.030.
6
Histone H3 N-terminus regulates higher order structure of yeast heterochromatin.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13153-9. doi: 10.1073/pnas.0906866106. Epub 2009 Aug 3.
9
HST3/HST4-dependent deacetylation of lysine 56 of histone H3 in silent chromatin.
Mol Biol Cell. 2008 Nov;19(11):4993-5005. doi: 10.1091/mbc.e08-05-0524. Epub 2008 Sep 17.
10
Heterochromatic gene silencing by activator interference and a transcription elongation barrier.
J Biol Chem. 2013 Oct 4;288(40):28771-82. doi: 10.1074/jbc.M113.460071. Epub 2013 Aug 12.

引用本文的文献

2
Transcription levels of a noncoding RNA orchestrate opposing regulatory and cell fate outcomes in yeast.
Cell Rep. 2021 Jan 19;34(3):108643. doi: 10.1016/j.celrep.2020.108643.
3
The Roles of Chromatin Accessibility in Regulating the White-Opaque Phenotypic Switch.
J Fungi (Basel). 2021 Jan 9;7(1):37. doi: 10.3390/jof7010037.
4
Regulation of plant architecture by a new histone acetyltransferase targeting gene bodies.
Nat Plants. 2020 Jul;6(7):809-822. doi: 10.1038/s41477-020-0715-2. Epub 2020 Jul 13.
5
Molecular basis of Tousled-Like Kinase 2 activation.
Nat Commun. 2018 Jun 28;9(1):2535. doi: 10.1038/s41467-018-04941-y.
6
Heritable capture of heterochromatin dynamics in Saccharomyces cerevisiae.
Elife. 2015 Jan 12;4:e05007. doi: 10.7554/eLife.05007.
7
Unveiling novel interactions of histone chaperone Asf1 linked to TREX-2 factors Sus1 and Thp1.
Nucleus. 2014 May-Jun;5(3):247-59. doi: 10.4161/nucl.29155. Epub 2014 May 13.
8
Getting down to the core of histone modifications.
Chromosoma. 2014 Aug;123(4):355-71. doi: 10.1007/s00412-014-0465-x. Epub 2014 May 2.
9
Uncoupling transcription from covalent histone modification.
PLoS Genet. 2014 Apr 10;10(4):e1004202. doi: 10.1371/journal.pgen.1004202. eCollection 2014 Apr.

本文引用的文献

1
Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.
PLoS Genet. 2008 Nov;4(11):e1000270. doi: 10.1371/journal.pgen.1000270. Epub 2008 Nov 21.
2
A silencer promotes the assembly of silenced chromatin independently of recruitment.
Mol Cell Biol. 2009 Jan;29(1):43-56. doi: 10.1128/MCB.00983-08. Epub 2008 Oct 27.
3
HST3/HST4-dependent deacetylation of lysine 56 of histone H3 in silent chromatin.
Mol Biol Cell. 2008 Nov;19(11):4993-5005. doi: 10.1091/mbc.e08-05-0524. Epub 2008 Sep 17.
5
Sir2 silences gene transcription by targeting the transition between RNA polymerase II initiation and elongation.
Mol Cell Biol. 2008 Jun;28(12):3979-94. doi: 10.1128/MCB.00019-08. Epub 2008 Apr 7.
6
Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast.
Mol Cell. 2007 Sep 21;27(6):890-900. doi: 10.1016/j.molcel.2007.07.021.
7
Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity.
J Biol Chem. 2007 Sep 28;282(39):28587-28596. doi: 10.1074/jbc.M702496200. Epub 2007 Aug 9.
9
RNA polymerase II determines the area of nucleosome loss in transcribed gene loci.
Biochem Biophys Res Commun. 2007 Jun 29;358(2):666-71. doi: 10.1016/j.bbrc.2007.05.003. Epub 2007 May 7.
10
Dynamics of replication-independent histone turnover in budding yeast.
Science. 2007 Mar 9;315(5817):1405-8. doi: 10.1126/science.1134053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验