Suppr超能文献

生物标志物发现与验证中的当前技术挑战。

Current technological challenges in biomarker discovery and validation.

作者信息

Horvatovich Peter L, Bischoff Rainer

机构信息

Analytical Biochemistry, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.

出版信息

Eur J Mass Spectrom (Chichester). 2010;16(1):101-21. doi: 10.1255/ejms.1050.

Abstract

In this review we will give an overview of the issues related to biomarker discovery studies with a focus on liquid chromatography-mass spectrometry (LC-MS) methods. Biomarker discovery is based on a close collaboration between clinicians, analytical scientists and chemometritians/statisticians. It is critical to define the final purpose of a biomarker or biomarker pattern at the onset of the study and to select case and control samples accordingly. This is followed by designing the experiment, starting with the sampling strategy, sample collection, storage and separation protocols, choice and validation of the quantitative profiling platform followed by data processing, statistical analysis and validation workflows. Biomarker candidates that result after statistical validation should be submitted for further validation and, ideally, be connected to the disease mechanism after their identification. Since most discovery studies work with a relatively small number of samples, it is necessary to assess the specificity and sensitivity of a given biomarker-based assay in a larger set of independent samples, preferably analyzed at another clinical center. Targeted analytical methods of higher throughput than the original discovery method are needed at this point and LC-tandem mass spectrometry is gaining acceptance in this field. Throughout this review, we will focus on possible sources of variance and how they can be assessed and reduced in order to avoid false positives and to reduce the number of false negatives in biomarker discovery research.

摘要

在本综述中,我们将概述与生物标志物发现研究相关的问题,重点关注液相色谱 - 质谱(LC-MS)方法。生物标志物的发现基于临床医生、分析科学家和化学计量学家/统计学家之间的密切合作。在研究开始时明确生物标志物或生物标志物模式的最终目的,并相应地选择病例和对照样本至关重要。接下来是设计实验,首先是采样策略、样本收集、储存和分离方案,定量分析平台的选择和验证,然后是数据处理、统计分析和验证工作流程。经过统计验证后产生的生物标志物候选物应进行进一步验证,理想情况下,在鉴定后应与疾病机制相关联。由于大多数发现研究使用的样本数量相对较少,因此有必要在更大的独立样本集中评估基于特定生物标志物的检测方法的特异性和敏感性,最好在另一个临床中心进行分析。此时需要比原始发现方法通量更高的靶向分析方法,液相色谱 - 串联质谱在该领域正逐渐被接受。在整个综述中,我们将关注可能的变异来源以及如何评估和减少这些变异,以避免假阳性并减少生物标志物发现研究中的假阴性数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验