Armed Forces Radiobiology Research Institute; 8901 Wisconsin Avenue, Bldg. 42; Bethesda, MD 20889-5603, USA.
Health Phys. 2010 Feb;98(2):244-51. doi: 10.1097/01.HP.0000348020.14969.4.
Partial-body biodosimetry is likely to be required after a radiological or nuclear exposure. Clinical signs and symptoms, distribution of dicentrics in circulating blood cells, organ-specific biomarkers, and physical signals in teeth and fingernails all can provide indications of non-homogeneous exposures. Organ specific biomarkers may provide early warning regarding physiological systems at risk after radiation injury. Use of a combination of markers and symptoms will be needed for clinical insights for therapeutic approaches. Analysis of dicentrics, a marker specific for radiation injury, is the "gold standard" of biodosimetry and can reveal partial-body exposures. Automation of sample processing for dicentric analysis can increase throughput with customization of off-the-shelf technologies for cytogenetic sample processing and information management. Automated analysis of the metaphase spreads is currently limited, but improvements are in development. The efforts described here bridge the technological gaps to allow the use of dicentric chromosome assay (DCA) for risk-based stratification of mass casualties. This article summarizes current knowledge on partial-body cytogenetic dose assessment, synthesizing information leading to the proposal of an approach to triage dose prediction in radiation mass casualties that is based on equivalent whole-body doses under partial-body exposure conditions and assesses the validity of using this model. An initial screening using only 20 metaphase spreads per subject can confirm irradiation above 2 Gy. A subsequent increase to 50 metaphases improves dose determination to allow risk stratification for clinical triage. Metaphases evaluated for inhomogeneous distribution of dicentrics can reveal partial-body exposures. The authors tested the validity of this approach in an in vitro model that simulates partial-body irradiation by mixing irradiated and un-irradiated lymphocytes in various proportions. Preliminary results support the notion that this approach will be effective under a range of conditions including some partial-body exposures, but may have limitations with low doses or small proportions of irradiated parts of the body. These studies address an important problem in the diagnosis of partial-body irradiation and dose assessment in mass casualties and propose a solution. However, additional work is needed to fully develop and validate the application of DCA to partial-body exposures.
局部人体生物剂量测定可能需要在放射性或核暴露后进行。临床症状和体征、循环血细胞中二体的分布、器官特异性生物标志物以及牙齿和指甲中的物理信号,都可以提供非均匀暴露的指示。器官特异性生物标志物可能会对辐射损伤后有风险的生理系统提供早期预警。为了临床洞察治疗方法,需要使用标志物和症状的组合。分析二体,一种特定于辐射损伤的标志物,是生物剂量测定的“金标准”,可以揭示局部暴露。二体分析的样本处理自动化可以通过定制现成的细胞遗传学样本处理和信息管理技术来提高通量。中期分裂相的自动分析目前受到限制,但正在开发改进。这里描述的努力弥合了技术差距,允许使用二体染色体分析(DCA)对大规模伤亡人员进行基于风险的分层。本文总结了局部人体细胞遗传学剂量评估的现有知识,综合了导致提出基于局部暴露条件下全身等效剂量对辐射大规模伤亡人员进行剂量预测分类的方法的信息,并评估了使用该模型的有效性。仅使用每个受试者的 20 个中期分裂相进行初步筛选可以确认照射剂量超过 2 Gy。随后增加到 50 个中期分裂相可以提高剂量确定,以允许进行临床分类的风险分层。评估二体不均匀分布的中期分裂相可以揭示局部暴露。作者在模拟局部照射的体外模型中测试了这种方法的有效性,方法是将辐照和未辐照的淋巴细胞以各种比例混合。初步结果支持这样一种观点,即在包括一些局部暴露在内的各种情况下,这种方法将是有效的,但在低剂量或身体受照部分比例较小的情况下可能存在局限性。这些研究解决了在大规模伤亡人员中诊断局部照射和剂量评估方面的一个重要问题,并提出了解决方案。然而,需要进一步的工作来充分开发和验证 DCA 在局部暴露中的应用。