Martin P R, Berdychevski R E, Subramanian U, Blakely W F, Prasanna P G S
Uniformed Services University of Health Sciences, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue. Bethesda, MD 20889-5603, USA.
Radiat Meas. 2007 Jul;42(6-7):1119-1124. doi: 10.1016/j.radmeas.2007.05.021.
Chromosome aberration-based dicentric assay is expected to be used after mass casualty life-threatening radiation exposures to assess radiation dose to individuals. This will require processing of a large number of samples for individual dose assessment and clinical triage to aid treatment decisions. We have established an automated, high-throughput, cytogenetic biodosimetry laboratory to process a large number of samples for conducting the dicentric assay using peripheral blood from exposed individuals according to internationally accepted laboratory protocols (i.e., within days following radiation exposures). The components of an automated cytogenetic biodosimetry laboratory include blood collection kits for sample shipment, a cell viability analyzer, a robotic liquid handler, an automated metaphase harvester, a metaphase spreader, high-throughput slide stainer and coverslipper, a high-throughput metaphase finder, multiple satellite chromosome-aberration analysis systems, and a computerized sample tracking system. Laboratory automation using commercially available, off-the-shelf technologies, customized technology integration, and implementation of a laboratory information management system (LIMS) for cytogenetic analysis will significantly increase throughput.This paper focuses on our efforts to eliminate data transcription errors, increase efficiency, and maintain samples' positive chain-of-custody by sample tracking during sample processing and data analysis. This sample tracking system represents a "beta" version, which can be modeled elsewhere in a cytogenetic biodosimetry laboratory, and includes a customized LIMS with a central server, personal computer workstations, barcode printers, fixed station and wireless hand-held devices to scan barcodes at various critical steps, and data transmission over a private intra-laboratory computer network. Our studies will improve diagnostic biodosimetry response, aid confirmation of clinical triage, and medical management of radiation exposed individuals.
基于染色体畸变的双着丝粒检测有望在大规模伤亡的危及生命的辐射暴露后用于评估个体的辐射剂量。这将需要处理大量样本以进行个体剂量评估和临床分类,以辅助治疗决策。我们建立了一个自动化、高通量的细胞遗传学生物剂量测定实验室,根据国际认可的实验室规程(即在辐射暴露后的数天内),使用受照个体的外周血处理大量样本以进行双着丝粒检测。自动化细胞遗传学生物剂量测定实验室的组成部分包括用于样本运输的采血试剂盒、细胞活力分析仪、自动液体处理仪、自动中期收获仪、中期铺片仪、高通量玻片染色和封片仪、高通量中期查找仪、多个卫星染色体畸变分析系统以及计算机化的样本追踪系统。使用商用现货技术的实验室自动化、定制技术集成以及实施用于细胞遗传学分析的实验室信息管理系统(LIMS)将显著提高通量。本文重点介绍我们为消除数据转录错误、提高效率以及在样本处理和数据分析过程中通过样本追踪维持样本的正向保管链所做的努力。这个样本追踪系统代表一个“测试版”,可在细胞遗传学生物剂量测定实验室的其他地方进行模仿,它包括一个定制的LIMS,有中央服务器、个人计算机工作站、条形码打印机、固定站和无线手持设备,以便在各个关键步骤扫描条形码,并通过专用的实验室内部计算机网络进行数据传输。我们的研究将改善诊断生物剂量测定反应,辅助确认临床分类以及对辐射暴露个体的医疗管理。